1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
|
#include "StarSkyRenderData.hpp"
#include "StarJsonExtra.hpp"
#include "StarDataStreamExtra.hpp"
#include "StarRandomPoint.hpp"
#include "StarDrawable.hpp"
namespace Star {
StringList const& SkyRenderData::starTypes() const {
if (type == SkyType::Warp)
return hyperStarList;
else
return starList;
}
List<SkyOrbiter> SkyRenderData::backOrbiters(Vec2F const& viewSize) const {
if (!settings)
return {};
float planetScale = settings.queryFloat("satellite.planetScale");
float moonScale = settings.queryFloat("satellite.moonScale");
List<tuple<List<pair<String, float>>, Vec2F, float>> orbitingCelestialObjects;
// Gather up all the CelestialParameters and scales for all the celestial
// objects to draw in the sky, we should draw the parent planet if we are a
// satellite, as well as all the other satellites.
if (skyParameters.nearbyPlanet)
orbitingCelestialObjects.append(tuple_cat(*skyParameters.nearbyPlanet, tie(planetScale)));
for (auto moon : skyParameters.nearbyMoons)
orbitingCelestialObjects.append(tuple_cat(moon, tie(moonScale)));
Vec2F satelliteArea = jsonToVec2F(settings.query("satellite.area"));
auto planetCenter = Vec2F(viewSize[0] / 2, 0) - worldOffset;
auto rotMatrix = Mat3F::rotation(worldRotation, planetCenter);
List<SkyOrbiter> orbiters;
for (auto const& object : orbitingCelestialObjects) {
auto const& layers = get<0>(object);
Vec2F pos = get<1>(object);
pos = pos.piecewiseMultiply(satelliteArea);
pos -= worldOffset;
pos = rotMatrix.transformVec2(pos);
for (auto const& l : layers)
orbiters.append(SkyOrbiter{SkyOrbiterType::Moon, get<2>(object) * l.second, 0.0f, l.first, pos});
}
return orbiters;
}
SkyWorldHorizon SkyRenderData::worldHorizon(Vec2F const& viewSize) const {
if (!settings)
return {};
SkyWorldHorizon worldHorizon;
if (type == SkyType::Orbital) {
worldHorizon.center = Vec2F(viewSize[0] / 2, 0) - worldOffset;
worldHorizon.scale = settings.queryFloat("planetHorizon.scale");
worldHorizon.rotation = worldRotation;
worldHorizon.layers = skyParameters.horizonImages;
}
return worldHorizon;
}
List<SkyOrbiter> SkyRenderData::frontOrbiters(Vec2F const& viewSize) const {
if (!settings)
return {};
struct HorizonCloud {
float startAngle;
String image;
float speed;
float radius;
};
List<HorizonCloud> horizonClouds;
if (skyParameters.horizonClouds) {
Vec2I cloudCountRange = jsonToVec2I(settings.query("planetHorizon.cloudCount"));
Vec2F cloudRadiusRange = jsonToVec2F(settings.query("planetHorizon.cloudRadius"));
Vec2F cloudSpeedRange = jsonToVec2F(settings.query("planetHorizon.cloudSpeed"));
StringList cloudList = jsonToStringList(settings.query("planetHorizon.clouds"));
int numClouds = staticRandomI32Range(cloudCountRange[0], cloudCountRange[1], "HorizonCloudCount");
for (int i = 0; i < numClouds; ++i) {
horizonClouds.append({staticRandomFloatRange(0, 2 * Constants::pi, i, "CloudStartAngle"),
staticRandomFrom(cloudList, i, "Cloud"),
staticRandomFloatRange(cloudSpeedRange[0], cloudSpeedRange[1], i, "CloudSpeed"),
staticRandomFloatRange(cloudRadiusRange[0], cloudRadiusRange[1], i, "CloudRadius")});
}
}
List<SkyOrbiter> orbiters;
if (type == SkyType::Atmospheric || type == SkyType::Atmosphereless) {
String image;
if (settings.queryBool("sun.dynamicImage.enabled", false) && !skyParameters.sunType.empty())
image = settings.queryString("sun.dynamicImage.images." + skyParameters.sunType, settings.queryString("sun.image"));
else
image = settings.queryString("sun.image");
orbiters.append({SkyOrbiterType::Sun,
settings.queryFloat("sun.scale", 1.0f),
0.0f,
image,
Vec2F::withAngle(orbitAngle, settings.queryFloat("sun.radius")) + viewSize / 2});
} else if (type == SkyType::Orbital) {
auto planetCenter = Vec2F(viewSize[0] / 2, 0)
- Vec2F::withAngle(worldRotation - Constants::pi / 2, settings.queryFloat("planetHorizon.yCenter")) - worldOffset;
float scale = settings.queryFloat("planetHorizon.scale");
auto rotMatrix = Mat3F::rotation(worldRotation, planetCenter);
if (skyParameters.horizonClouds) {
for (auto const& horizonCloud : horizonClouds) {
Vec2F position = Vec2F::withAngle(horizonCloud.startAngle + orbitAngle * horizonCloud.speed, horizonCloud.radius) + planetCenter;
position = rotMatrix.transformVec2(position);
orbiters.append({SkyOrbiterType::HorizonCloud, scale, worldRotation, horizonCloud.image, position});
}
}
}
return orbiters;
}
DataStream& operator>>(DataStream& ds, SkyRenderData& skyRenderData) {
ds.read(skyRenderData.settings);
ds.read(skyRenderData.skyParameters);
ds.read(skyRenderData.type);
ds.read(skyRenderData.dayLevel);
ds.read(skyRenderData.skyAlpha);
ds.read(skyRenderData.dayLength);
ds.read(skyRenderData.timeOfDay);
ds.read(skyRenderData.epochTime);
ds.read(skyRenderData.starOffset);
ds.read(skyRenderData.starRotation);
ds.read(skyRenderData.worldOffset);
ds.read(skyRenderData.worldRotation);
ds.read(skyRenderData.orbitAngle);
ds.readVlqS(skyRenderData.starFrames);
ds.read(skyRenderData.starList);
ds.read(skyRenderData.hyperStarList);
ds.read(skyRenderData.environmentLight);
ds.read(skyRenderData.mainSkyColor);
ds.read(skyRenderData.topRectColor);
ds.read(skyRenderData.bottomRectColor);
ds.read(skyRenderData.flashColor);
return ds;
}
DataStream& operator<<(DataStream& ds, SkyRenderData const& skyRenderData) {
ds.write(skyRenderData.settings);
ds.write(skyRenderData.skyParameters);
ds.write(skyRenderData.type);
ds.write(skyRenderData.dayLevel);
ds.write(skyRenderData.skyAlpha);
ds.write(skyRenderData.dayLength);
ds.write(skyRenderData.timeOfDay);
ds.write(skyRenderData.epochTime);
ds.write(skyRenderData.starOffset);
ds.write(skyRenderData.starRotation);
ds.write(skyRenderData.worldOffset);
ds.write(skyRenderData.worldRotation);
ds.write(skyRenderData.orbitAngle);
ds.writeVlqS(skyRenderData.starFrames);
ds.write(skyRenderData.starList);
ds.write(skyRenderData.hyperStarList);
ds.write(skyRenderData.environmentLight);
ds.write(skyRenderData.mainSkyColor);
ds.write(skyRenderData.topRectColor);
ds.write(skyRenderData.bottomRectColor);
ds.write(skyRenderData.flashColor);
return ds;
}
}
|