1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
|
// fast_float by Daniel Lemire
// fast_float by João Paulo Magalhaes
//
//
// with contributions from Eugene Golushkov
// with contributions from Maksim Kita
// with contributions from Marcin Wojdyr
// with contributions from Neal Richardson
// with contributions from Tim Paine
// with contributions from Fabio Pellacini
// with contributions from Lénárd Szolnoki
// with contributions from Jan Pharago
// with contributions from Maya Warrier
// with contributions from Taha Khokhar
//
//
// Licensed under the Apache License, Version 2.0, or the
// MIT License or the Boost License. This file may not be copied,
// modified, or distributed except according to those terms.
//
// MIT License Notice
//
// MIT License
//
// Copyright (c) 2021 The fast_float authors
//
// Permission is hereby granted, free of charge, to any
// person obtaining a copy of this software and associated
// documentation files (the "Software"), to deal in the
// Software without restriction, including without
// limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice
// shall be included in all copies or substantial portions
// of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
// ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
// TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
// PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
// SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
// IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//
// Apache License (Version 2.0) Notice
//
// Copyright 2021 The fast_float authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
//
// BOOST License Notice
//
// Boost Software License - Version 1.0 - August 17th, 2003
//
// Permission is hereby granted, free of charge, to any person or organization
// obtaining a copy of the software and accompanying documentation covered by
// this license (the "Software") to use, reproduce, display, distribute,
// execute, and transmit the Software, and to prepare derivative works of the
// Software, and to permit third-parties to whom the Software is furnished to
// do so, all subject to the following:
//
// The copyright notices in the Software and this entire statement, including
// the above license grant, this restriction and the following disclaimer,
// must be included in all copies of the Software, in whole or in part, and
// all derivative works of the Software, unless such copies or derivative
// works are solely in the form of machine-executable object code generated by
// a source language processor.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//
#ifndef FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H
#define FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H
#ifdef __has_include
#if __has_include(<version>)
#include <version>
#endif
#endif
// Testing for https://wg21.link/N3652, adopted in C++14
#if __cpp_constexpr >= 201304
#define FASTFLOAT_CONSTEXPR14 constexpr
#else
#define FASTFLOAT_CONSTEXPR14
#endif
#if defined(__cpp_lib_bit_cast) && __cpp_lib_bit_cast >= 201806L
#define FASTFLOAT_HAS_BIT_CAST 1
#else
#define FASTFLOAT_HAS_BIT_CAST 0
#endif
#if defined(__cpp_lib_is_constant_evaluated) && \
__cpp_lib_is_constant_evaluated >= 201811L
#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 1
#else
#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 0
#endif
// Testing for relevant C++20 constexpr library features
#if FASTFLOAT_HAS_IS_CONSTANT_EVALUATED && FASTFLOAT_HAS_BIT_CAST && \
__cpp_lib_constexpr_algorithms >= 201806L /*For std::copy and std::fill*/
#define FASTFLOAT_CONSTEXPR20 constexpr
#define FASTFLOAT_IS_CONSTEXPR 1
#else
#define FASTFLOAT_CONSTEXPR20
#define FASTFLOAT_IS_CONSTEXPR 0
#endif
#if __cplusplus >= 201703L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L)
#define FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 0
#else
#define FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 1
#endif
#endif // FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H
#ifndef FASTFLOAT_FLOAT_COMMON_H
#define FASTFLOAT_FLOAT_COMMON_H
#include <cfloat>
#include <cstdint>
#include <cassert>
#include <cstring>
#include <type_traits>
#include <system_error>
#ifdef __has_include
#if __has_include(<stdfloat>) && (__cplusplus > 202002L || _MSVC_LANG > 202002L)
#include <stdfloat>
#endif
#endif
namespace fast_float {
#define FASTFLOAT_JSONFMT (1 << 5)
#define FASTFLOAT_FORTRANFMT (1 << 6)
enum chars_format {
scientific = 1 << 0,
fixed = 1 << 2,
hex = 1 << 3,
no_infnan = 1 << 4,
// RFC 8259: https://datatracker.ietf.org/doc/html/rfc8259#section-6
json = FASTFLOAT_JSONFMT | fixed | scientific | no_infnan,
// Extension of RFC 8259 where, e.g., "inf" and "nan" are allowed.
json_or_infnan = FASTFLOAT_JSONFMT | fixed | scientific,
fortran = FASTFLOAT_FORTRANFMT | fixed | scientific,
general = fixed | scientific
};
template <typename UC> struct from_chars_result_t {
UC const *ptr;
std::errc ec;
};
using from_chars_result = from_chars_result_t<char>;
template <typename UC> struct parse_options_t {
constexpr explicit parse_options_t(chars_format fmt = chars_format::general,
UC dot = UC('.'))
: format(fmt), decimal_point(dot) {}
/** Which number formats are accepted */
chars_format format;
/** The character used as decimal point */
UC decimal_point;
};
using parse_options = parse_options_t<char>;
} // namespace fast_float
#if FASTFLOAT_HAS_BIT_CAST
#include <bit>
#endif
#if (defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \
defined(__amd64) || defined(__aarch64__) || defined(_M_ARM64) || \
defined(__MINGW64__) || defined(__s390x__) || \
(defined(__ppc64__) || defined(__PPC64__) || defined(__ppc64le__) || \
defined(__PPC64LE__)) || \
defined(__loongarch64))
#define FASTFLOAT_64BIT 1
#elif (defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
defined(__arm__) || defined(_M_ARM) || defined(__ppc__) || \
defined(__MINGW32__) || defined(__EMSCRIPTEN__))
#define FASTFLOAT_32BIT 1
#else
// Need to check incrementally, since SIZE_MAX is a size_t, avoid overflow.
// We can never tell the register width, but the SIZE_MAX is a good
// approximation. UINTPTR_MAX and INTPTR_MAX are optional, so avoid them for max
// portability.
#if SIZE_MAX == 0xffff
#error Unknown platform (16-bit, unsupported)
#elif SIZE_MAX == 0xffffffff
#define FASTFLOAT_32BIT 1
#elif SIZE_MAX == 0xffffffffffffffff
#define FASTFLOAT_64BIT 1
#else
#error Unknown platform (not 32-bit, not 64-bit?)
#endif
#endif
#if ((defined(_WIN32) || defined(_WIN64)) && !defined(__clang__)) || \
(defined(_M_ARM64) && !defined(__MINGW32__))
#include <intrin.h>
#endif
#if defined(_MSC_VER) && !defined(__clang__)
#define FASTFLOAT_VISUAL_STUDIO 1
#endif
#if defined __BYTE_ORDER__ && defined __ORDER_BIG_ENDIAN__
#define FASTFLOAT_IS_BIG_ENDIAN (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
#elif defined _WIN32
#define FASTFLOAT_IS_BIG_ENDIAN 0
#else
#if defined(__APPLE__) || defined(__FreeBSD__)
#include <machine/endian.h>
#elif defined(sun) || defined(__sun)
#include <sys/byteorder.h>
#elif defined(__MVS__)
#include <sys/endian.h>
#else
#ifdef __has_include
#if __has_include(<endian.h>)
#include <endian.h>
#endif //__has_include(<endian.h>)
#endif //__has_include
#endif
#
#ifndef __BYTE_ORDER__
// safe choice
#define FASTFLOAT_IS_BIG_ENDIAN 0
#endif
#
#ifndef __ORDER_LITTLE_ENDIAN__
// safe choice
#define FASTFLOAT_IS_BIG_ENDIAN 0
#endif
#
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#define FASTFLOAT_IS_BIG_ENDIAN 0
#else
#define FASTFLOAT_IS_BIG_ENDIAN 1
#endif
#endif
#if defined(__SSE2__) || (defined(FASTFLOAT_VISUAL_STUDIO) && \
(defined(_M_AMD64) || defined(_M_X64) || \
(defined(_M_IX86_FP) && _M_IX86_FP == 2)))
#define FASTFLOAT_SSE2 1
#endif
#if defined(__aarch64__) || defined(_M_ARM64)
#define FASTFLOAT_NEON 1
#endif
#if defined(FASTFLOAT_SSE2) || defined(FASTFLOAT_NEON)
#define FASTFLOAT_HAS_SIMD 1
#endif
#if defined(__GNUC__)
// disable -Wcast-align=strict (GCC only)
#define FASTFLOAT_SIMD_DISABLE_WARNINGS \
_Pragma("GCC diagnostic push") \
_Pragma("GCC diagnostic ignored \"-Wcast-align\"")
#else
#define FASTFLOAT_SIMD_DISABLE_WARNINGS
#endif
#if defined(__GNUC__)
#define FASTFLOAT_SIMD_RESTORE_WARNINGS _Pragma("GCC diagnostic pop")
#else
#define FASTFLOAT_SIMD_RESTORE_WARNINGS
#endif
#ifdef FASTFLOAT_VISUAL_STUDIO
#define fastfloat_really_inline __forceinline
#else
#define fastfloat_really_inline inline __attribute__((always_inline))
#endif
#ifndef FASTFLOAT_ASSERT
#define FASTFLOAT_ASSERT(x) \
{ ((void)(x)); }
#endif
#ifndef FASTFLOAT_DEBUG_ASSERT
#define FASTFLOAT_DEBUG_ASSERT(x) \
{ ((void)(x)); }
#endif
// rust style `try!()` macro, or `?` operator
#define FASTFLOAT_TRY(x) \
{ \
if (!(x)) \
return false; \
}
#define FASTFLOAT_ENABLE_IF(...) \
typename std::enable_if<(__VA_ARGS__), int>::type
namespace fast_float {
fastfloat_really_inline constexpr bool cpp20_and_in_constexpr() {
#if FASTFLOAT_HAS_IS_CONSTANT_EVALUATED
return std::is_constant_evaluated();
#else
return false;
#endif
}
template <typename T>
fastfloat_really_inline constexpr bool is_supported_float_type() {
return std::is_same<T, float>::value || std::is_same<T, double>::value
#if __STDCPP_FLOAT32_T__
|| std::is_same<T, std::float32_t>::value
#endif
#if __STDCPP_FLOAT64_T__
|| std::is_same<T, std::float64_t>::value
#endif
;
}
template <typename UC>
fastfloat_really_inline constexpr bool is_supported_char_type() {
return std::is_same<UC, char>::value || std::is_same<UC, wchar_t>::value ||
std::is_same<UC, char16_t>::value || std::is_same<UC, char32_t>::value;
}
// Compares two ASCII strings in a case insensitive manner.
template <typename UC>
inline FASTFLOAT_CONSTEXPR14 bool
fastfloat_strncasecmp(UC const *input1, UC const *input2, size_t length) {
char running_diff{0};
for (size_t i = 0; i < length; ++i) {
running_diff |= (char(input1[i]) ^ char(input2[i]));
}
return (running_diff == 0) || (running_diff == 32);
}
#ifndef FLT_EVAL_METHOD
#error "FLT_EVAL_METHOD should be defined, please include cfloat."
#endif
// a pointer and a length to a contiguous block of memory
template <typename T> struct span {
const T *ptr;
size_t length;
constexpr span(const T *_ptr, size_t _length) : ptr(_ptr), length(_length) {}
constexpr span() : ptr(nullptr), length(0) {}
constexpr size_t len() const noexcept { return length; }
FASTFLOAT_CONSTEXPR14 const T &operator[](size_t index) const noexcept {
FASTFLOAT_DEBUG_ASSERT(index < length);
return ptr[index];
}
};
struct value128 {
uint64_t low;
uint64_t high;
constexpr value128(uint64_t _low, uint64_t _high) : low(_low), high(_high) {}
constexpr value128() : low(0), high(0) {}
};
/* Helper C++14 constexpr generic implementation of leading_zeroes */
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 int
leading_zeroes_generic(uint64_t input_num, int last_bit = 0) {
if (input_num & uint64_t(0xffffffff00000000)) {
input_num >>= 32;
last_bit |= 32;
}
if (input_num & uint64_t(0xffff0000)) {
input_num >>= 16;
last_bit |= 16;
}
if (input_num & uint64_t(0xff00)) {
input_num >>= 8;
last_bit |= 8;
}
if (input_num & uint64_t(0xf0)) {
input_num >>= 4;
last_bit |= 4;
}
if (input_num & uint64_t(0xc)) {
input_num >>= 2;
last_bit |= 2;
}
if (input_num & uint64_t(0x2)) { /* input_num >>= 1; */
last_bit |= 1;
}
return 63 - last_bit;
}
/* result might be undefined when input_num is zero */
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 int
leading_zeroes(uint64_t input_num) {
assert(input_num > 0);
if (cpp20_and_in_constexpr()) {
return leading_zeroes_generic(input_num);
}
#ifdef FASTFLOAT_VISUAL_STUDIO
#if defined(_M_X64) || defined(_M_ARM64)
unsigned long leading_zero = 0;
// Search the mask data from most significant bit (MSB)
// to least significant bit (LSB) for a set bit (1).
_BitScanReverse64(&leading_zero, input_num);
return (int)(63 - leading_zero);
#else
return leading_zeroes_generic(input_num);
#endif
#else
return __builtin_clzll(input_num);
#endif
}
// slow emulation routine for 32-bit
fastfloat_really_inline constexpr uint64_t emulu(uint32_t x, uint32_t y) {
return x * (uint64_t)y;
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t
umul128_generic(uint64_t ab, uint64_t cd, uint64_t *hi) {
uint64_t ad = emulu((uint32_t)(ab >> 32), (uint32_t)cd);
uint64_t bd = emulu((uint32_t)ab, (uint32_t)cd);
uint64_t adbc = ad + emulu((uint32_t)ab, (uint32_t)(cd >> 32));
uint64_t adbc_carry = (uint64_t)(adbc < ad);
uint64_t lo = bd + (adbc << 32);
*hi = emulu((uint32_t)(ab >> 32), (uint32_t)(cd >> 32)) + (adbc >> 32) +
(adbc_carry << 32) + (uint64_t)(lo < bd);
return lo;
}
#ifdef FASTFLOAT_32BIT
// slow emulation routine for 32-bit
#if !defined(__MINGW64__)
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t _umul128(uint64_t ab,
uint64_t cd,
uint64_t *hi) {
return umul128_generic(ab, cd, hi);
}
#endif // !__MINGW64__
#endif // FASTFLOAT_32BIT
// compute 64-bit a*b
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 value128
full_multiplication(uint64_t a, uint64_t b) {
if (cpp20_and_in_constexpr()) {
value128 answer;
answer.low = umul128_generic(a, b, &answer.high);
return answer;
}
value128 answer;
#if defined(_M_ARM64) && !defined(__MINGW32__)
// ARM64 has native support for 64-bit multiplications, no need to emulate
// But MinGW on ARM64 doesn't have native support for 64-bit multiplications
answer.high = __umulh(a, b);
answer.low = a * b;
#elif defined(FASTFLOAT_32BIT) || \
(defined(_WIN64) && !defined(__clang__) && !defined(_M_ARM64))
answer.low = _umul128(a, b, &answer.high); // _umul128 not available on ARM64
#elif defined(FASTFLOAT_64BIT) && defined(__SIZEOF_INT128__)
__uint128_t r = ((__uint128_t)a) * b;
answer.low = uint64_t(r);
answer.high = uint64_t(r >> 64);
#else
answer.low = umul128_generic(a, b, &answer.high);
#endif
return answer;
}
struct adjusted_mantissa {
uint64_t mantissa{0};
int32_t power2{0}; // a negative value indicates an invalid result
adjusted_mantissa() = default;
constexpr bool operator==(const adjusted_mantissa &o) const {
return mantissa == o.mantissa && power2 == o.power2;
}
constexpr bool operator!=(const adjusted_mantissa &o) const {
return mantissa != o.mantissa || power2 != o.power2;
}
};
// Bias so we can get the real exponent with an invalid adjusted_mantissa.
constexpr static int32_t invalid_am_bias = -0x8000;
// used for binary_format_lookup_tables<T>::max_mantissa
constexpr uint64_t constant_55555 = 5 * 5 * 5 * 5 * 5;
template <typename T, typename U = void> struct binary_format_lookup_tables;
template <typename T> struct binary_format : binary_format_lookup_tables<T> {
using equiv_uint =
typename std::conditional<sizeof(T) == 4, uint32_t, uint64_t>::type;
static inline constexpr int mantissa_explicit_bits();
static inline constexpr int minimum_exponent();
static inline constexpr int infinite_power();
static inline constexpr int sign_index();
static inline constexpr int
min_exponent_fast_path(); // used when fegetround() == FE_TONEAREST
static inline constexpr int max_exponent_fast_path();
static inline constexpr int max_exponent_round_to_even();
static inline constexpr int min_exponent_round_to_even();
static inline constexpr uint64_t max_mantissa_fast_path(int64_t power);
static inline constexpr uint64_t
max_mantissa_fast_path(); // used when fegetround() == FE_TONEAREST
static inline constexpr int largest_power_of_ten();
static inline constexpr int smallest_power_of_ten();
static inline constexpr T exact_power_of_ten(int64_t power);
static inline constexpr size_t max_digits();
static inline constexpr equiv_uint exponent_mask();
static inline constexpr equiv_uint mantissa_mask();
static inline constexpr equiv_uint hidden_bit_mask();
};
template <typename U> struct binary_format_lookup_tables<double, U> {
static constexpr double powers_of_ten[] = {
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11,
1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22};
// Largest integer value v so that (5**index * v) <= 1<<53.
// 0x20000000000000 == 1 << 53
static constexpr uint64_t max_mantissa[] = {
0x20000000000000,
0x20000000000000 / 5,
0x20000000000000 / (5 * 5),
0x20000000000000 / (5 * 5 * 5),
0x20000000000000 / (5 * 5 * 5 * 5),
0x20000000000000 / (constant_55555),
0x20000000000000 / (constant_55555 * 5),
0x20000000000000 / (constant_55555 * 5 * 5),
0x20000000000000 / (constant_55555 * 5 * 5 * 5),
0x20000000000000 / (constant_55555 * 5 * 5 * 5 * 5),
0x20000000000000 / (constant_55555 * constant_55555),
0x20000000000000 / (constant_55555 * constant_55555 * 5),
0x20000000000000 / (constant_55555 * constant_55555 * 5 * 5),
0x20000000000000 / (constant_55555 * constant_55555 * 5 * 5 * 5),
0x20000000000000 / (constant_55555 * constant_55555 * constant_55555),
0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5),
0x20000000000000 /
(constant_55555 * constant_55555 * constant_55555 * 5 * 5),
0x20000000000000 /
(constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5),
0x20000000000000 /
(constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5 * 5),
0x20000000000000 /
(constant_55555 * constant_55555 * constant_55555 * constant_55555),
0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 *
constant_55555 * 5),
0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 *
constant_55555 * 5 * 5),
0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 *
constant_55555 * 5 * 5 * 5),
0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 *
constant_55555 * 5 * 5 * 5 * 5)};
};
#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE
template <typename U>
constexpr double binary_format_lookup_tables<double, U>::powers_of_ten[];
template <typename U>
constexpr uint64_t binary_format_lookup_tables<double, U>::max_mantissa[];
#endif
template <typename U> struct binary_format_lookup_tables<float, U> {
static constexpr float powers_of_ten[] = {1e0f, 1e1f, 1e2f, 1e3f, 1e4f, 1e5f,
1e6f, 1e7f, 1e8f, 1e9f, 1e10f};
// Largest integer value v so that (5**index * v) <= 1<<24.
// 0x1000000 == 1<<24
static constexpr uint64_t max_mantissa[] = {
0x1000000,
0x1000000 / 5,
0x1000000 / (5 * 5),
0x1000000 / (5 * 5 * 5),
0x1000000 / (5 * 5 * 5 * 5),
0x1000000 / (constant_55555),
0x1000000 / (constant_55555 * 5),
0x1000000 / (constant_55555 * 5 * 5),
0x1000000 / (constant_55555 * 5 * 5 * 5),
0x1000000 / (constant_55555 * 5 * 5 * 5 * 5),
0x1000000 / (constant_55555 * constant_55555),
0x1000000 / (constant_55555 * constant_55555 * 5)};
};
#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE
template <typename U>
constexpr float binary_format_lookup_tables<float, U>::powers_of_ten[];
template <typename U>
constexpr uint64_t binary_format_lookup_tables<float, U>::max_mantissa[];
#endif
template <>
inline constexpr int binary_format<double>::min_exponent_fast_path() {
#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
return 0;
#else
return -22;
#endif
}
template <>
inline constexpr int binary_format<float>::min_exponent_fast_path() {
#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
return 0;
#else
return -10;
#endif
}
template <>
inline constexpr int binary_format<double>::mantissa_explicit_bits() {
return 52;
}
template <>
inline constexpr int binary_format<float>::mantissa_explicit_bits() {
return 23;
}
template <>
inline constexpr int binary_format<double>::max_exponent_round_to_even() {
return 23;
}
template <>
inline constexpr int binary_format<float>::max_exponent_round_to_even() {
return 10;
}
template <>
inline constexpr int binary_format<double>::min_exponent_round_to_even() {
return -4;
}
template <>
inline constexpr int binary_format<float>::min_exponent_round_to_even() {
return -17;
}
template <> inline constexpr int binary_format<double>::minimum_exponent() {
return -1023;
}
template <> inline constexpr int binary_format<float>::minimum_exponent() {
return -127;
}
template <> inline constexpr int binary_format<double>::infinite_power() {
return 0x7FF;
}
template <> inline constexpr int binary_format<float>::infinite_power() {
return 0xFF;
}
template <> inline constexpr int binary_format<double>::sign_index() {
return 63;
}
template <> inline constexpr int binary_format<float>::sign_index() {
return 31;
}
template <>
inline constexpr int binary_format<double>::max_exponent_fast_path() {
return 22;
}
template <>
inline constexpr int binary_format<float>::max_exponent_fast_path() {
return 10;
}
template <>
inline constexpr uint64_t binary_format<double>::max_mantissa_fast_path() {
return uint64_t(2) << mantissa_explicit_bits();
}
template <>
inline constexpr uint64_t
binary_format<double>::max_mantissa_fast_path(int64_t power) {
// caller is responsible to ensure that
// power >= 0 && power <= 22
//
// Work around clang bug https://godbolt.org/z/zedh7rrhc
return (void)max_mantissa[0], max_mantissa[power];
}
template <>
inline constexpr uint64_t binary_format<float>::max_mantissa_fast_path() {
return uint64_t(2) << mantissa_explicit_bits();
}
template <>
inline constexpr uint64_t
binary_format<float>::max_mantissa_fast_path(int64_t power) {
// caller is responsible to ensure that
// power >= 0 && power <= 10
//
// Work around clang bug https://godbolt.org/z/zedh7rrhc
return (void)max_mantissa[0], max_mantissa[power];
}
template <>
inline constexpr double
binary_format<double>::exact_power_of_ten(int64_t power) {
// Work around clang bug https://godbolt.org/z/zedh7rrhc
return (void)powers_of_ten[0], powers_of_ten[power];
}
template <>
inline constexpr float binary_format<float>::exact_power_of_ten(int64_t power) {
// Work around clang bug https://godbolt.org/z/zedh7rrhc
return (void)powers_of_ten[0], powers_of_ten[power];
}
template <> inline constexpr int binary_format<double>::largest_power_of_ten() {
return 308;
}
template <> inline constexpr int binary_format<float>::largest_power_of_ten() {
return 38;
}
template <>
inline constexpr int binary_format<double>::smallest_power_of_ten() {
return -342;
}
template <> inline constexpr int binary_format<float>::smallest_power_of_ten() {
return -64;
}
template <> inline constexpr size_t binary_format<double>::max_digits() {
return 769;
}
template <> inline constexpr size_t binary_format<float>::max_digits() {
return 114;
}
template <>
inline constexpr binary_format<float>::equiv_uint
binary_format<float>::exponent_mask() {
return 0x7F800000;
}
template <>
inline constexpr binary_format<double>::equiv_uint
binary_format<double>::exponent_mask() {
return 0x7FF0000000000000;
}
template <>
inline constexpr binary_format<float>::equiv_uint
binary_format<float>::mantissa_mask() {
return 0x007FFFFF;
}
template <>
inline constexpr binary_format<double>::equiv_uint
binary_format<double>::mantissa_mask() {
return 0x000FFFFFFFFFFFFF;
}
template <>
inline constexpr binary_format<float>::equiv_uint
binary_format<float>::hidden_bit_mask() {
return 0x00800000;
}
template <>
inline constexpr binary_format<double>::equiv_uint
binary_format<double>::hidden_bit_mask() {
return 0x0010000000000000;
}
template <typename T>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
to_float(bool negative, adjusted_mantissa am, T &value) {
using fastfloat_uint = typename binary_format<T>::equiv_uint;
fastfloat_uint word = (fastfloat_uint)am.mantissa;
word |= fastfloat_uint(am.power2)
<< binary_format<T>::mantissa_explicit_bits();
word |= fastfloat_uint(negative) << binary_format<T>::sign_index();
#if FASTFLOAT_HAS_BIT_CAST
value = std::bit_cast<T>(word);
#else
::memcpy(&value, &word, sizeof(T));
#endif
}
#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default
template <typename = void> struct space_lut {
static constexpr bool value[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
};
#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE
template <typename T> constexpr bool space_lut<T>::value[];
#endif
inline constexpr bool is_space(uint8_t c) { return space_lut<>::value[c]; }
#endif
template <typename UC> static constexpr uint64_t int_cmp_zeros() {
static_assert((sizeof(UC) == 1) || (sizeof(UC) == 2) || (sizeof(UC) == 4),
"Unsupported character size");
return (sizeof(UC) == 1) ? 0x3030303030303030
: (sizeof(UC) == 2)
? (uint64_t(UC('0')) << 48 | uint64_t(UC('0')) << 32 |
uint64_t(UC('0')) << 16 | UC('0'))
: (uint64_t(UC('0')) << 32 | UC('0'));
}
template <typename UC> static constexpr int int_cmp_len() {
return sizeof(uint64_t) / sizeof(UC);
}
template <typename UC> static constexpr UC const *str_const_nan() {
return nullptr;
}
template <> constexpr char const *str_const_nan<char>() { return "nan"; }
template <> constexpr wchar_t const *str_const_nan<wchar_t>() { return L"nan"; }
template <> constexpr char16_t const *str_const_nan<char16_t>() {
return u"nan";
}
template <> constexpr char32_t const *str_const_nan<char32_t>() {
return U"nan";
}
template <typename UC> static constexpr UC const *str_const_inf() {
return nullptr;
}
template <> constexpr char const *str_const_inf<char>() { return "infinity"; }
template <> constexpr wchar_t const *str_const_inf<wchar_t>() {
return L"infinity";
}
template <> constexpr char16_t const *str_const_inf<char16_t>() {
return u"infinity";
}
template <> constexpr char32_t const *str_const_inf<char32_t>() {
return U"infinity";
}
template <typename = void> struct int_luts {
static constexpr uint8_t chdigit[] = {
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 255, 255,
255, 255, 255, 255, 255, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 255, 255, 255, 255, 255, 255, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255};
static constexpr size_t maxdigits_u64[] = {
64, 41, 32, 28, 25, 23, 22, 21, 20, 19, 18, 18, 17, 17, 16, 16, 16, 16,
15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13};
static constexpr uint64_t min_safe_u64[] = {
9223372036854775808ull, 12157665459056928801ull, 4611686018427387904,
7450580596923828125, 4738381338321616896, 3909821048582988049,
9223372036854775808ull, 12157665459056928801ull, 10000000000000000000ull,
5559917313492231481, 2218611106740436992, 8650415919381337933,
2177953337809371136, 6568408355712890625, 1152921504606846976,
2862423051509815793, 6746640616477458432, 15181127029874798299ull,
1638400000000000000, 3243919932521508681, 6221821273427820544,
11592836324538749809ull, 876488338465357824, 1490116119384765625,
2481152873203736576, 4052555153018976267, 6502111422497947648,
10260628712958602189ull, 15943230000000000000ull, 787662783788549761,
1152921504606846976, 1667889514952984961, 2386420683693101056,
3379220508056640625, 4738381338321616896};
};
#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE
template <typename T> constexpr uint8_t int_luts<T>::chdigit[];
template <typename T> constexpr size_t int_luts<T>::maxdigits_u64[];
template <typename T> constexpr uint64_t int_luts<T>::min_safe_u64[];
#endif
template <typename UC>
fastfloat_really_inline constexpr uint8_t ch_to_digit(UC c) {
return int_luts<>::chdigit[static_cast<unsigned char>(c)];
}
fastfloat_really_inline constexpr size_t max_digits_u64(int base) {
return int_luts<>::maxdigits_u64[base - 2];
}
// If a u64 is exactly max_digits_u64() in length, this is
// the value below which it has definitely overflowed.
fastfloat_really_inline constexpr uint64_t min_safe_u64(int base) {
return int_luts<>::min_safe_u64[base - 2];
}
} // namespace fast_float
#endif
#ifndef FASTFLOAT_FAST_FLOAT_H
#define FASTFLOAT_FAST_FLOAT_H
namespace fast_float {
/**
* This function parses the character sequence [first,last) for a number. It
* parses floating-point numbers expecting a locale-indepent format equivalent
* to what is used by std::strtod in the default ("C") locale. The resulting
* floating-point value is the closest floating-point values (using either float
* or double), using the "round to even" convention for values that would
* otherwise fall right in-between two values. That is, we provide exact parsing
* according to the IEEE standard.
*
* Given a successful parse, the pointer (`ptr`) in the returned value is set to
* point right after the parsed number, and the `value` referenced is set to the
* parsed value. In case of error, the returned `ec` contains a representative
* error, otherwise the default (`std::errc()`) value is stored.
*
* The implementation does not throw and does not allocate memory (e.g., with
* `new` or `malloc`).
*
* Like the C++17 standard, the `fast_float::from_chars` functions take an
* optional last argument of the type `fast_float::chars_format`. It is a bitset
* value: we check whether `fmt & fast_float::chars_format::fixed` and `fmt &
* fast_float::chars_format::scientific` are set to determine whether we allow
* the fixed point and scientific notation respectively. The default is
* `fast_float::chars_format::general` which allows both `fixed` and
* `scientific`.
*/
template <typename T, typename UC = char,
typename = FASTFLOAT_ENABLE_IF(is_supported_float_type<T>())>
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
from_chars(UC const *first, UC const *last, T &value,
chars_format fmt = chars_format::general) noexcept;
/**
* Like from_chars, but accepts an `options` argument to govern number parsing.
*/
template <typename T, typename UC = char>
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
from_chars_advanced(UC const *first, UC const *last, T &value,
parse_options_t<UC> options) noexcept;
/**
* from_chars for integer types.
*/
template <typename T, typename UC = char,
typename = FASTFLOAT_ENABLE_IF(!is_supported_float_type<T>())>
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
from_chars(UC const *first, UC const *last, T &value, int base = 10) noexcept;
} // namespace fast_float
#endif // FASTFLOAT_FAST_FLOAT_H
#ifndef FASTFLOAT_ASCII_NUMBER_H
#define FASTFLOAT_ASCII_NUMBER_H
#include <cctype>
#include <cstdint>
#include <cstring>
#include <iterator>
#include <limits>
#include <type_traits>
#ifdef FASTFLOAT_SSE2
#include <emmintrin.h>
#endif
#ifdef FASTFLOAT_NEON
#include <arm_neon.h>
#endif
namespace fast_float {
template <typename UC> fastfloat_really_inline constexpr bool has_simd_opt() {
#ifdef FASTFLOAT_HAS_SIMD
return std::is_same<UC, char16_t>::value;
#else
return false;
#endif
}
// Next function can be micro-optimized, but compilers are entirely
// able to optimize it well.
template <typename UC>
fastfloat_really_inline constexpr bool is_integer(UC c) noexcept {
return !(c > UC('9') || c < UC('0'));
}
fastfloat_really_inline constexpr uint64_t byteswap(uint64_t val) {
return (val & 0xFF00000000000000) >> 56 | (val & 0x00FF000000000000) >> 40 |
(val & 0x0000FF0000000000) >> 24 | (val & 0x000000FF00000000) >> 8 |
(val & 0x00000000FF000000) << 8 | (val & 0x0000000000FF0000) << 24 |
(val & 0x000000000000FF00) << 40 | (val & 0x00000000000000FF) << 56;
}
// Read 8 UC into a u64. Truncates UC if not char.
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
read8_to_u64(const UC *chars) {
if (cpp20_and_in_constexpr() || !std::is_same<UC, char>::value) {
uint64_t val = 0;
for (int i = 0; i < 8; ++i) {
val |= uint64_t(uint8_t(*chars)) << (i * 8);
++chars;
}
return val;
}
uint64_t val;
::memcpy(&val, chars, sizeof(uint64_t));
#if FASTFLOAT_IS_BIG_ENDIAN == 1
// Need to read as-if the number was in little-endian order.
val = byteswap(val);
#endif
return val;
}
#ifdef FASTFLOAT_SSE2
fastfloat_really_inline uint64_t simd_read8_to_u64(const __m128i data) {
FASTFLOAT_SIMD_DISABLE_WARNINGS
const __m128i packed = _mm_packus_epi16(data, data);
#ifdef FASTFLOAT_64BIT
return uint64_t(_mm_cvtsi128_si64(packed));
#else
uint64_t value;
// Visual Studio + older versions of GCC don't support _mm_storeu_si64
_mm_storel_epi64(reinterpret_cast<__m128i *>(&value), packed);
return value;
#endif
FASTFLOAT_SIMD_RESTORE_WARNINGS
}
fastfloat_really_inline uint64_t simd_read8_to_u64(const char16_t *chars) {
FASTFLOAT_SIMD_DISABLE_WARNINGS
return simd_read8_to_u64(
_mm_loadu_si128(reinterpret_cast<const __m128i *>(chars)));
FASTFLOAT_SIMD_RESTORE_WARNINGS
}
#elif defined(FASTFLOAT_NEON)
fastfloat_really_inline uint64_t simd_read8_to_u64(const uint16x8_t data) {
FASTFLOAT_SIMD_DISABLE_WARNINGS
uint8x8_t utf8_packed = vmovn_u16(data);
return vget_lane_u64(vreinterpret_u64_u8(utf8_packed), 0);
FASTFLOAT_SIMD_RESTORE_WARNINGS
}
fastfloat_really_inline uint64_t simd_read8_to_u64(const char16_t *chars) {
FASTFLOAT_SIMD_DISABLE_WARNINGS
return simd_read8_to_u64(
vld1q_u16(reinterpret_cast<const uint16_t *>(chars)));
FASTFLOAT_SIMD_RESTORE_WARNINGS
}
#endif // FASTFLOAT_SSE2
// MSVC SFINAE is broken pre-VS2017
#if defined(_MSC_VER) && _MSC_VER <= 1900
template <typename UC>
#else
template <typename UC, FASTFLOAT_ENABLE_IF(!has_simd_opt<UC>()) = 0>
#endif
// dummy for compile
uint64_t simd_read8_to_u64(UC const *) {
return 0;
}
// credit @aqrit
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint32_t
parse_eight_digits_unrolled(uint64_t val) {
const uint64_t mask = 0x000000FF000000FF;
const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32)
const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32)
val -= 0x3030303030303030;
val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8;
val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32;
return uint32_t(val);
}
// Call this if chars are definitely 8 digits.
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint32_t
parse_eight_digits_unrolled(UC const *chars) noexcept {
if (cpp20_and_in_constexpr() || !has_simd_opt<UC>()) {
return parse_eight_digits_unrolled(read8_to_u64(chars)); // truncation okay
}
return parse_eight_digits_unrolled(simd_read8_to_u64(chars));
}
// credit @aqrit
fastfloat_really_inline constexpr bool
is_made_of_eight_digits_fast(uint64_t val) noexcept {
return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) &
0x8080808080808080));
}
#ifdef FASTFLOAT_HAS_SIMD
// Call this if chars might not be 8 digits.
// Using this style (instead of is_made_of_eight_digits_fast() then
// parse_eight_digits_unrolled()) ensures we don't load SIMD registers twice.
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
simd_parse_if_eight_digits_unrolled(const char16_t *chars,
uint64_t &i) noexcept {
if (cpp20_and_in_constexpr()) {
return false;
}
#ifdef FASTFLOAT_SSE2
FASTFLOAT_SIMD_DISABLE_WARNINGS
const __m128i data =
_mm_loadu_si128(reinterpret_cast<const __m128i *>(chars));
// (x - '0') <= 9
// http://0x80.pl/articles/simd-parsing-int-sequences.html
const __m128i t0 = _mm_add_epi16(data, _mm_set1_epi16(32720));
const __m128i t1 = _mm_cmpgt_epi16(t0, _mm_set1_epi16(-32759));
if (_mm_movemask_epi8(t1) == 0) {
i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data));
return true;
} else
return false;
FASTFLOAT_SIMD_RESTORE_WARNINGS
#elif defined(FASTFLOAT_NEON)
FASTFLOAT_SIMD_DISABLE_WARNINGS
const uint16x8_t data = vld1q_u16(reinterpret_cast<const uint16_t *>(chars));
// (x - '0') <= 9
// http://0x80.pl/articles/simd-parsing-int-sequences.html
const uint16x8_t t0 = vsubq_u16(data, vmovq_n_u16('0'));
const uint16x8_t mask = vcltq_u16(t0, vmovq_n_u16('9' - '0' + 1));
if (vminvq_u16(mask) == 0xFFFF) {
i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data));
return true;
} else
return false;
FASTFLOAT_SIMD_RESTORE_WARNINGS
#else
(void)chars;
(void)i;
return false;
#endif // FASTFLOAT_SSE2
}
#endif // FASTFLOAT_HAS_SIMD
// MSVC SFINAE is broken pre-VS2017
#if defined(_MSC_VER) && _MSC_VER <= 1900
template <typename UC>
#else
template <typename UC, FASTFLOAT_ENABLE_IF(!has_simd_opt<UC>()) = 0>
#endif
// dummy for compile
bool simd_parse_if_eight_digits_unrolled(UC const *, uint64_t &) {
return 0;
}
template <typename UC, FASTFLOAT_ENABLE_IF(!std::is_same<UC, char>::value) = 0>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
loop_parse_if_eight_digits(const UC *&p, const UC *const pend, uint64_t &i) {
if (!has_simd_opt<UC>()) {
return;
}
while ((std::distance(p, pend) >= 8) &&
simd_parse_if_eight_digits_unrolled(
p, i)) { // in rare cases, this will overflow, but that's ok
p += 8;
}
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
loop_parse_if_eight_digits(const char *&p, const char *const pend,
uint64_t &i) {
// optimizes better than parse_if_eight_digits_unrolled() for UC = char.
while ((std::distance(p, pend) >= 8) &&
is_made_of_eight_digits_fast(read8_to_u64(p))) {
i = i * 100000000 +
parse_eight_digits_unrolled(read8_to_u64(
p)); // in rare cases, this will overflow, but that's ok
p += 8;
}
}
enum class parse_error {
no_error,
// [JSON-only] The minus sign must be followed by an integer.
missing_integer_after_sign,
// A sign must be followed by an integer or dot.
missing_integer_or_dot_after_sign,
// [JSON-only] The integer part must not have leading zeros.
leading_zeros_in_integer_part,
// [JSON-only] The integer part must have at least one digit.
no_digits_in_integer_part,
// [JSON-only] If there is a decimal point, there must be digits in the
// fractional part.
no_digits_in_fractional_part,
// The mantissa must have at least one digit.
no_digits_in_mantissa,
// Scientific notation requires an exponential part.
missing_exponential_part,
};
template <typename UC> struct parsed_number_string_t {
int64_t exponent{0};
uint64_t mantissa{0};
UC const *lastmatch{nullptr};
bool negative{false};
bool valid{false};
bool too_many_digits{false};
// contains the range of the significant digits
span<const UC> integer{}; // non-nullable
span<const UC> fraction{}; // nullable
parse_error error{parse_error::no_error};
};
using byte_span = span<const char>;
using parsed_number_string = parsed_number_string_t<char>;
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 parsed_number_string_t<UC>
report_parse_error(UC const *p, parse_error error) {
parsed_number_string_t<UC> answer;
answer.valid = false;
answer.lastmatch = p;
answer.error = error;
return answer;
}
// Assuming that you use no more than 19 digits, this will
// parse an ASCII string.
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 parsed_number_string_t<UC>
parse_number_string(UC const *p, UC const *pend,
parse_options_t<UC> options) noexcept {
chars_format const fmt = options.format;
UC const decimal_point = options.decimal_point;
parsed_number_string_t<UC> answer;
answer.valid = false;
answer.too_many_digits = false;
answer.negative = (*p == UC('-'));
#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default
if ((*p == UC('-')) || (!(fmt & FASTFLOAT_JSONFMT) && *p == UC('+'))) {
#else
if (*p == UC('-')) { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here
#endif
++p;
if (p == pend) {
return report_parse_error<UC>(
p, parse_error::missing_integer_or_dot_after_sign);
}
if (fmt & FASTFLOAT_JSONFMT) {
if (!is_integer(*p)) { // a sign must be followed by an integer
return report_parse_error<UC>(p,
parse_error::missing_integer_after_sign);
}
} else {
if (!is_integer(*p) &&
(*p !=
decimal_point)) { // a sign must be followed by an integer or the dot
return report_parse_error<UC>(
p, parse_error::missing_integer_or_dot_after_sign);
}
}
}
UC const *const start_digits = p;
uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad)
while ((p != pend) && is_integer(*p)) {
// a multiplication by 10 is cheaper than an arbitrary integer
// multiplication
i = 10 * i +
uint64_t(*p -
UC('0')); // might overflow, we will handle the overflow later
++p;
}
UC const *const end_of_integer_part = p;
int64_t digit_count = int64_t(end_of_integer_part - start_digits);
answer.integer = span<const UC>(start_digits, size_t(digit_count));
if (fmt & FASTFLOAT_JSONFMT) {
// at least 1 digit in integer part, without leading zeros
if (digit_count == 0) {
return report_parse_error<UC>(p, parse_error::no_digits_in_integer_part);
}
if ((start_digits[0] == UC('0') && digit_count > 1)) {
return report_parse_error<UC>(start_digits,
parse_error::leading_zeros_in_integer_part);
}
}
int64_t exponent = 0;
const bool has_decimal_point = (p != pend) && (*p == decimal_point);
if (has_decimal_point) {
++p;
UC const *before = p;
// can occur at most twice without overflowing, but let it occur more, since
// for integers with many digits, digit parsing is the primary bottleneck.
loop_parse_if_eight_digits(p, pend, i);
while ((p != pend) && is_integer(*p)) {
uint8_t digit = uint8_t(*p - UC('0'));
++p;
i = i * 10 + digit; // in rare cases, this will overflow, but that's ok
}
exponent = before - p;
answer.fraction = span<const UC>(before, size_t(p - before));
digit_count -= exponent;
}
if (fmt & FASTFLOAT_JSONFMT) {
// at least 1 digit in fractional part
if (has_decimal_point && exponent == 0) {
return report_parse_error<UC>(p,
parse_error::no_digits_in_fractional_part);
}
} else if (digit_count ==
0) { // we must have encountered at least one integer!
return report_parse_error<UC>(p, parse_error::no_digits_in_mantissa);
}
int64_t exp_number = 0; // explicit exponential part
if (((fmt & chars_format::scientific) && (p != pend) &&
((UC('e') == *p) || (UC('E') == *p))) ||
((fmt & FASTFLOAT_FORTRANFMT) && (p != pend) &&
((UC('+') == *p) || (UC('-') == *p) || (UC('d') == *p) ||
(UC('D') == *p)))) {
UC const *location_of_e = p;
if ((UC('e') == *p) || (UC('E') == *p) || (UC('d') == *p) ||
(UC('D') == *p)) {
++p;
}
bool neg_exp = false;
if ((p != pend) && (UC('-') == *p)) {
neg_exp = true;
++p;
} else if ((p != pend) &&
(UC('+') ==
*p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1)
++p;
}
if ((p == pend) || !is_integer(*p)) {
if (!(fmt & chars_format::fixed)) {
// The exponential part is invalid for scientific notation, so it must
// be a trailing token for fixed notation. However, fixed notation is
// disabled, so report a scientific notation error.
return report_parse_error<UC>(p, parse_error::missing_exponential_part);
}
// Otherwise, we will be ignoring the 'e'.
p = location_of_e;
} else {
while ((p != pend) && is_integer(*p)) {
uint8_t digit = uint8_t(*p - UC('0'));
if (exp_number < 0x10000000) {
exp_number = 10 * exp_number + digit;
}
++p;
}
if (neg_exp) {
exp_number = -exp_number;
}
exponent += exp_number;
}
} else {
// If it scientific and not fixed, we have to bail out.
if ((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) {
return report_parse_error<UC>(p, parse_error::missing_exponential_part);
}
}
answer.lastmatch = p;
answer.valid = true;
// If we frequently had to deal with long strings of digits,
// we could extend our code by using a 128-bit integer instead
// of a 64-bit integer. However, this is uncommon.
//
// We can deal with up to 19 digits.
if (digit_count > 19) { // this is uncommon
// It is possible that the integer had an overflow.
// We have to handle the case where we have 0.0000somenumber.
// We need to be mindful of the case where we only have zeroes...
// E.g., 0.000000000...000.
UC const *start = start_digits;
while ((start != pend) && (*start == UC('0') || *start == decimal_point)) {
if (*start == UC('0')) {
digit_count--;
}
start++;
}
if (digit_count > 19) {
answer.too_many_digits = true;
// Let us start again, this time, avoiding overflows.
// We don't need to check if is_integer, since we use the
// pre-tokenized spans from above.
i = 0;
p = answer.integer.ptr;
UC const *int_end = p + answer.integer.len();
const uint64_t minimal_nineteen_digit_integer{1000000000000000000};
while ((i < minimal_nineteen_digit_integer) && (p != int_end)) {
i = i * 10 + uint64_t(*p - UC('0'));
++p;
}
if (i >= minimal_nineteen_digit_integer) { // We have a big integers
exponent = end_of_integer_part - p + exp_number;
} else { // We have a value with a fractional component.
p = answer.fraction.ptr;
UC const *frac_end = p + answer.fraction.len();
while ((i < minimal_nineteen_digit_integer) && (p != frac_end)) {
i = i * 10 + uint64_t(*p - UC('0'));
++p;
}
exponent = answer.fraction.ptr - p + exp_number;
}
// We have now corrected both exponent and i, to a truncated value
}
}
answer.exponent = exponent;
answer.mantissa = i;
return answer;
}
template <typename T, typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
parse_int_string(UC const *p, UC const *pend, T &value, int base) {
from_chars_result_t<UC> answer;
UC const *const first = p;
bool negative = (*p == UC('-'));
if (!std::is_signed<T>::value && negative) {
answer.ec = std::errc::invalid_argument;
answer.ptr = first;
return answer;
}
#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default
if ((*p == UC('-')) || (*p == UC('+'))) {
#else
if (*p == UC('-')) {
#endif
++p;
}
UC const *const start_num = p;
while (p != pend && *p == UC('0')) {
++p;
}
const bool has_leading_zeros = p > start_num;
UC const *const start_digits = p;
uint64_t i = 0;
if (base == 10) {
loop_parse_if_eight_digits(p, pend, i); // use SIMD if possible
}
while (p != pend) {
uint8_t digit = ch_to_digit(*p);
if (digit >= base) {
break;
}
i = uint64_t(base) * i + digit; // might overflow, check this later
p++;
}
size_t digit_count = size_t(p - start_digits);
if (digit_count == 0) {
if (has_leading_zeros) {
value = 0;
answer.ec = std::errc();
answer.ptr = p;
} else {
answer.ec = std::errc::invalid_argument;
answer.ptr = first;
}
return answer;
}
answer.ptr = p;
// check u64 overflow
size_t max_digits = max_digits_u64(base);
if (digit_count > max_digits) {
answer.ec = std::errc::result_out_of_range;
return answer;
}
// this check can be eliminated for all other types, but they will all require
// a max_digits(base) equivalent
if (digit_count == max_digits && i < min_safe_u64(base)) {
answer.ec = std::errc::result_out_of_range;
return answer;
}
// check other types overflow
if (!std::is_same<T, uint64_t>::value) {
if (i > uint64_t(std::numeric_limits<T>::max()) + uint64_t(negative)) {
answer.ec = std::errc::result_out_of_range;
return answer;
}
}
if (negative) {
#ifdef FASTFLOAT_VISUAL_STUDIO
#pragma warning(push)
#pragma warning(disable : 4146)
#endif
// this weird workaround is required because:
// - converting unsigned to signed when its value is greater than signed max
// is UB pre-C++23.
// - reinterpret_casting (~i + 1) would work, but it is not constexpr
// this is always optimized into a neg instruction (note: T is an integer
// type)
value = T(-std::numeric_limits<T>::max() -
T(i - uint64_t(std::numeric_limits<T>::max())));
#ifdef FASTFLOAT_VISUAL_STUDIO
#pragma warning(pop)
#endif
} else {
value = T(i);
}
answer.ec = std::errc();
return answer;
}
} // namespace fast_float
#endif
#ifndef FASTFLOAT_FAST_TABLE_H
#define FASTFLOAT_FAST_TABLE_H
#include <cstdint>
namespace fast_float {
/**
* When mapping numbers from decimal to binary,
* we go from w * 10^q to m * 2^p but we have
* 10^q = 5^q * 2^q, so effectively
* we are trying to match
* w * 2^q * 5^q to m * 2^p. Thus the powers of two
* are not a concern since they can be represented
* exactly using the binary notation, only the powers of five
* affect the binary significand.
*/
/**
* The smallest non-zero float (binary64) is 2^-1074.
* We take as input numbers of the form w x 10^q where w < 2^64.
* We have that w * 10^-343 < 2^(64-344) 5^-343 < 2^-1076.
* However, we have that
* (2^64-1) * 10^-342 = (2^64-1) * 2^-342 * 5^-342 > 2^-1074.
* Thus it is possible for a number of the form w * 10^-342 where
* w is a 64-bit value to be a non-zero floating-point number.
*********
* Any number of form w * 10^309 where w>= 1 is going to be
* infinite in binary64 so we never need to worry about powers
* of 5 greater than 308.
*/
template <class unused = void> struct powers_template {
constexpr static int smallest_power_of_five =
binary_format<double>::smallest_power_of_ten();
constexpr static int largest_power_of_five =
binary_format<double>::largest_power_of_ten();
constexpr static int number_of_entries =
2 * (largest_power_of_five - smallest_power_of_five + 1);
// Powers of five from 5^-342 all the way to 5^308 rounded toward one.
constexpr static uint64_t power_of_five_128[number_of_entries] = {
0xeef453d6923bd65a, 0x113faa2906a13b3f,
0x9558b4661b6565f8, 0x4ac7ca59a424c507,
0xbaaee17fa23ebf76, 0x5d79bcf00d2df649,
0xe95a99df8ace6f53, 0xf4d82c2c107973dc,
0x91d8a02bb6c10594, 0x79071b9b8a4be869,
0xb64ec836a47146f9, 0x9748e2826cdee284,
0xe3e27a444d8d98b7, 0xfd1b1b2308169b25,
0x8e6d8c6ab0787f72, 0xfe30f0f5e50e20f7,
0xb208ef855c969f4f, 0xbdbd2d335e51a935,
0xde8b2b66b3bc4723, 0xad2c788035e61382,
0x8b16fb203055ac76, 0x4c3bcb5021afcc31,
0xaddcb9e83c6b1793, 0xdf4abe242a1bbf3d,
0xd953e8624b85dd78, 0xd71d6dad34a2af0d,
0x87d4713d6f33aa6b, 0x8672648c40e5ad68,
0xa9c98d8ccb009506, 0x680efdaf511f18c2,
0xd43bf0effdc0ba48, 0x212bd1b2566def2,
0x84a57695fe98746d, 0x14bb630f7604b57,
0xa5ced43b7e3e9188, 0x419ea3bd35385e2d,
0xcf42894a5dce35ea, 0x52064cac828675b9,
0x818995ce7aa0e1b2, 0x7343efebd1940993,
0xa1ebfb4219491a1f, 0x1014ebe6c5f90bf8,
0xca66fa129f9b60a6, 0xd41a26e077774ef6,
0xfd00b897478238d0, 0x8920b098955522b4,
0x9e20735e8cb16382, 0x55b46e5f5d5535b0,
0xc5a890362fddbc62, 0xeb2189f734aa831d,
0xf712b443bbd52b7b, 0xa5e9ec7501d523e4,
0x9a6bb0aa55653b2d, 0x47b233c92125366e,
0xc1069cd4eabe89f8, 0x999ec0bb696e840a,
0xf148440a256e2c76, 0xc00670ea43ca250d,
0x96cd2a865764dbca, 0x380406926a5e5728,
0xbc807527ed3e12bc, 0xc605083704f5ecf2,
0xeba09271e88d976b, 0xf7864a44c633682e,
0x93445b8731587ea3, 0x7ab3ee6afbe0211d,
0xb8157268fdae9e4c, 0x5960ea05bad82964,
0xe61acf033d1a45df, 0x6fb92487298e33bd,
0x8fd0c16206306bab, 0xa5d3b6d479f8e056,
0xb3c4f1ba87bc8696, 0x8f48a4899877186c,
0xe0b62e2929aba83c, 0x331acdabfe94de87,
0x8c71dcd9ba0b4925, 0x9ff0c08b7f1d0b14,
0xaf8e5410288e1b6f, 0x7ecf0ae5ee44dd9,
0xdb71e91432b1a24a, 0xc9e82cd9f69d6150,
0x892731ac9faf056e, 0xbe311c083a225cd2,
0xab70fe17c79ac6ca, 0x6dbd630a48aaf406,
0xd64d3d9db981787d, 0x92cbbccdad5b108,
0x85f0468293f0eb4e, 0x25bbf56008c58ea5,
0xa76c582338ed2621, 0xaf2af2b80af6f24e,
0xd1476e2c07286faa, 0x1af5af660db4aee1,
0x82cca4db847945ca, 0x50d98d9fc890ed4d,
0xa37fce126597973c, 0xe50ff107bab528a0,
0xcc5fc196fefd7d0c, 0x1e53ed49a96272c8,
0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7a,
0x9faacf3df73609b1, 0x77b191618c54e9ac,
0xc795830d75038c1d, 0xd59df5b9ef6a2417,
0xf97ae3d0d2446f25, 0x4b0573286b44ad1d,
0x9becce62836ac577, 0x4ee367f9430aec32,
0xc2e801fb244576d5, 0x229c41f793cda73f,
0xf3a20279ed56d48a, 0x6b43527578c1110f,
0x9845418c345644d6, 0x830a13896b78aaa9,
0xbe5691ef416bd60c, 0x23cc986bc656d553,
0xedec366b11c6cb8f, 0x2cbfbe86b7ec8aa8,
0x94b3a202eb1c3f39, 0x7bf7d71432f3d6a9,
0xb9e08a83a5e34f07, 0xdaf5ccd93fb0cc53,
0xe858ad248f5c22c9, 0xd1b3400f8f9cff68,
0x91376c36d99995be, 0x23100809b9c21fa1,
0xb58547448ffffb2d, 0xabd40a0c2832a78a,
0xe2e69915b3fff9f9, 0x16c90c8f323f516c,
0x8dd01fad907ffc3b, 0xae3da7d97f6792e3,
0xb1442798f49ffb4a, 0x99cd11cfdf41779c,
0xdd95317f31c7fa1d, 0x40405643d711d583,
0x8a7d3eef7f1cfc52, 0x482835ea666b2572,
0xad1c8eab5ee43b66, 0xda3243650005eecf,
0xd863b256369d4a40, 0x90bed43e40076a82,
0x873e4f75e2224e68, 0x5a7744a6e804a291,
0xa90de3535aaae202, 0x711515d0a205cb36,
0xd3515c2831559a83, 0xd5a5b44ca873e03,
0x8412d9991ed58091, 0xe858790afe9486c2,
0xa5178fff668ae0b6, 0x626e974dbe39a872,
0xce5d73ff402d98e3, 0xfb0a3d212dc8128f,
0x80fa687f881c7f8e, 0x7ce66634bc9d0b99,
0xa139029f6a239f72, 0x1c1fffc1ebc44e80,
0xc987434744ac874e, 0xa327ffb266b56220,
0xfbe9141915d7a922, 0x4bf1ff9f0062baa8,
0x9d71ac8fada6c9b5, 0x6f773fc3603db4a9,
0xc4ce17b399107c22, 0xcb550fb4384d21d3,
0xf6019da07f549b2b, 0x7e2a53a146606a48,
0x99c102844f94e0fb, 0x2eda7444cbfc426d,
0xc0314325637a1939, 0xfa911155fefb5308,
0xf03d93eebc589f88, 0x793555ab7eba27ca,
0x96267c7535b763b5, 0x4bc1558b2f3458de,
0xbbb01b9283253ca2, 0x9eb1aaedfb016f16,
0xea9c227723ee8bcb, 0x465e15a979c1cadc,
0x92a1958a7675175f, 0xbfacd89ec191ec9,
0xb749faed14125d36, 0xcef980ec671f667b,
0xe51c79a85916f484, 0x82b7e12780e7401a,
0x8f31cc0937ae58d2, 0xd1b2ecb8b0908810,
0xb2fe3f0b8599ef07, 0x861fa7e6dcb4aa15,
0xdfbdcece67006ac9, 0x67a791e093e1d49a,
0x8bd6a141006042bd, 0xe0c8bb2c5c6d24e0,
0xaecc49914078536d, 0x58fae9f773886e18,
0xda7f5bf590966848, 0xaf39a475506a899e,
0x888f99797a5e012d, 0x6d8406c952429603,
0xaab37fd7d8f58178, 0xc8e5087ba6d33b83,
0xd5605fcdcf32e1d6, 0xfb1e4a9a90880a64,
0x855c3be0a17fcd26, 0x5cf2eea09a55067f,
0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481e,
0xd0601d8efc57b08b, 0xf13b94daf124da26,
0x823c12795db6ce57, 0x76c53d08d6b70858,
0xa2cb1717b52481ed, 0x54768c4b0c64ca6e,
0xcb7ddcdda26da268, 0xa9942f5dcf7dfd09,
0xfe5d54150b090b02, 0xd3f93b35435d7c4c,
0x9efa548d26e5a6e1, 0xc47bc5014a1a6daf,
0xc6b8e9b0709f109a, 0x359ab6419ca1091b,
0xf867241c8cc6d4c0, 0xc30163d203c94b62,
0x9b407691d7fc44f8, 0x79e0de63425dcf1d,
0xc21094364dfb5636, 0x985915fc12f542e4,
0xf294b943e17a2bc4, 0x3e6f5b7b17b2939d,
0x979cf3ca6cec5b5a, 0xa705992ceecf9c42,
0xbd8430bd08277231, 0x50c6ff782a838353,
0xece53cec4a314ebd, 0xa4f8bf5635246428,
0x940f4613ae5ed136, 0x871b7795e136be99,
0xb913179899f68584, 0x28e2557b59846e3f,
0xe757dd7ec07426e5, 0x331aeada2fe589cf,
0x9096ea6f3848984f, 0x3ff0d2c85def7621,
0xb4bca50b065abe63, 0xfed077a756b53a9,
0xe1ebce4dc7f16dfb, 0xd3e8495912c62894,
0x8d3360f09cf6e4bd, 0x64712dd7abbbd95c,
0xb080392cc4349dec, 0xbd8d794d96aacfb3,
0xdca04777f541c567, 0xecf0d7a0fc5583a0,
0x89e42caaf9491b60, 0xf41686c49db57244,
0xac5d37d5b79b6239, 0x311c2875c522ced5,
0xd77485cb25823ac7, 0x7d633293366b828b,
0x86a8d39ef77164bc, 0xae5dff9c02033197,
0xa8530886b54dbdeb, 0xd9f57f830283fdfc,
0xd267caa862a12d66, 0xd072df63c324fd7b,
0x8380dea93da4bc60, 0x4247cb9e59f71e6d,
0xa46116538d0deb78, 0x52d9be85f074e608,
0xcd795be870516656, 0x67902e276c921f8b,
0x806bd9714632dff6, 0xba1cd8a3db53b6,
0xa086cfcd97bf97f3, 0x80e8a40eccd228a4,
0xc8a883c0fdaf7df0, 0x6122cd128006b2cd,
0xfad2a4b13d1b5d6c, 0x796b805720085f81,
0x9cc3a6eec6311a63, 0xcbe3303674053bb0,
0xc3f490aa77bd60fc, 0xbedbfc4411068a9c,
0xf4f1b4d515acb93b, 0xee92fb5515482d44,
0x991711052d8bf3c5, 0x751bdd152d4d1c4a,
0xbf5cd54678eef0b6, 0xd262d45a78a0635d,
0xef340a98172aace4, 0x86fb897116c87c34,
0x9580869f0e7aac0e, 0xd45d35e6ae3d4da0,
0xbae0a846d2195712, 0x8974836059cca109,
0xe998d258869facd7, 0x2bd1a438703fc94b,
0x91ff83775423cc06, 0x7b6306a34627ddcf,
0xb67f6455292cbf08, 0x1a3bc84c17b1d542,
0xe41f3d6a7377eeca, 0x20caba5f1d9e4a93,
0x8e938662882af53e, 0x547eb47b7282ee9c,
0xb23867fb2a35b28d, 0xe99e619a4f23aa43,
0xdec681f9f4c31f31, 0x6405fa00e2ec94d4,
0x8b3c113c38f9f37e, 0xde83bc408dd3dd04,
0xae0b158b4738705e, 0x9624ab50b148d445,
0xd98ddaee19068c76, 0x3badd624dd9b0957,
0x87f8a8d4cfa417c9, 0xe54ca5d70a80e5d6,
0xa9f6d30a038d1dbc, 0x5e9fcf4ccd211f4c,
0xd47487cc8470652b, 0x7647c3200069671f,
0x84c8d4dfd2c63f3b, 0x29ecd9f40041e073,
0xa5fb0a17c777cf09, 0xf468107100525890,
0xcf79cc9db955c2cc, 0x7182148d4066eeb4,
0x81ac1fe293d599bf, 0xc6f14cd848405530,
0xa21727db38cb002f, 0xb8ada00e5a506a7c,
0xca9cf1d206fdc03b, 0xa6d90811f0e4851c,
0xfd442e4688bd304a, 0x908f4a166d1da663,
0x9e4a9cec15763e2e, 0x9a598e4e043287fe,
0xc5dd44271ad3cdba, 0x40eff1e1853f29fd,
0xf7549530e188c128, 0xd12bee59e68ef47c,
0x9a94dd3e8cf578b9, 0x82bb74f8301958ce,
0xc13a148e3032d6e7, 0xe36a52363c1faf01,
0xf18899b1bc3f8ca1, 0xdc44e6c3cb279ac1,
0x96f5600f15a7b7e5, 0x29ab103a5ef8c0b9,
0xbcb2b812db11a5de, 0x7415d448f6b6f0e7,
0xebdf661791d60f56, 0x111b495b3464ad21,
0x936b9fcebb25c995, 0xcab10dd900beec34,
0xb84687c269ef3bfb, 0x3d5d514f40eea742,
0xe65829b3046b0afa, 0xcb4a5a3112a5112,
0x8ff71a0fe2c2e6dc, 0x47f0e785eaba72ab,
0xb3f4e093db73a093, 0x59ed216765690f56,
0xe0f218b8d25088b8, 0x306869c13ec3532c,
0x8c974f7383725573, 0x1e414218c73a13fb,
0xafbd2350644eeacf, 0xe5d1929ef90898fa,
0xdbac6c247d62a583, 0xdf45f746b74abf39,
0x894bc396ce5da772, 0x6b8bba8c328eb783,
0xab9eb47c81f5114f, 0x66ea92f3f326564,
0xd686619ba27255a2, 0xc80a537b0efefebd,
0x8613fd0145877585, 0xbd06742ce95f5f36,
0xa798fc4196e952e7, 0x2c48113823b73704,
0xd17f3b51fca3a7a0, 0xf75a15862ca504c5,
0x82ef85133de648c4, 0x9a984d73dbe722fb,
0xa3ab66580d5fdaf5, 0xc13e60d0d2e0ebba,
0xcc963fee10b7d1b3, 0x318df905079926a8,
0xffbbcfe994e5c61f, 0xfdf17746497f7052,
0x9fd561f1fd0f9bd3, 0xfeb6ea8bedefa633,
0xc7caba6e7c5382c8, 0xfe64a52ee96b8fc0,
0xf9bd690a1b68637b, 0x3dfdce7aa3c673b0,
0x9c1661a651213e2d, 0x6bea10ca65c084e,
0xc31bfa0fe5698db8, 0x486e494fcff30a62,
0xf3e2f893dec3f126, 0x5a89dba3c3efccfa,
0x986ddb5c6b3a76b7, 0xf89629465a75e01c,
0xbe89523386091465, 0xf6bbb397f1135823,
0xee2ba6c0678b597f, 0x746aa07ded582e2c,
0x94db483840b717ef, 0xa8c2a44eb4571cdc,
0xba121a4650e4ddeb, 0x92f34d62616ce413,
0xe896a0d7e51e1566, 0x77b020baf9c81d17,
0x915e2486ef32cd60, 0xace1474dc1d122e,
0xb5b5ada8aaff80b8, 0xd819992132456ba,
0xe3231912d5bf60e6, 0x10e1fff697ed6c69,
0x8df5efabc5979c8f, 0xca8d3ffa1ef463c1,
0xb1736b96b6fd83b3, 0xbd308ff8a6b17cb2,
0xddd0467c64bce4a0, 0xac7cb3f6d05ddbde,
0x8aa22c0dbef60ee4, 0x6bcdf07a423aa96b,
0xad4ab7112eb3929d, 0x86c16c98d2c953c6,
0xd89d64d57a607744, 0xe871c7bf077ba8b7,
0x87625f056c7c4a8b, 0x11471cd764ad4972,
0xa93af6c6c79b5d2d, 0xd598e40d3dd89bcf,
0xd389b47879823479, 0x4aff1d108d4ec2c3,
0x843610cb4bf160cb, 0xcedf722a585139ba,
0xa54394fe1eedb8fe, 0xc2974eb4ee658828,
0xce947a3da6a9273e, 0x733d226229feea32,
0x811ccc668829b887, 0x806357d5a3f525f,
0xa163ff802a3426a8, 0xca07c2dcb0cf26f7,
0xc9bcff6034c13052, 0xfc89b393dd02f0b5,
0xfc2c3f3841f17c67, 0xbbac2078d443ace2,
0x9d9ba7832936edc0, 0xd54b944b84aa4c0d,
0xc5029163f384a931, 0xa9e795e65d4df11,
0xf64335bcf065d37d, 0x4d4617b5ff4a16d5,
0x99ea0196163fa42e, 0x504bced1bf8e4e45,
0xc06481fb9bcf8d39, 0xe45ec2862f71e1d6,
0xf07da27a82c37088, 0x5d767327bb4e5a4c,
0x964e858c91ba2655, 0x3a6a07f8d510f86f,
0xbbe226efb628afea, 0x890489f70a55368b,
0xeadab0aba3b2dbe5, 0x2b45ac74ccea842e,
0x92c8ae6b464fc96f, 0x3b0b8bc90012929d,
0xb77ada0617e3bbcb, 0x9ce6ebb40173744,
0xe55990879ddcaabd, 0xcc420a6a101d0515,
0x8f57fa54c2a9eab6, 0x9fa946824a12232d,
0xb32df8e9f3546564, 0x47939822dc96abf9,
0xdff9772470297ebd, 0x59787e2b93bc56f7,
0x8bfbea76c619ef36, 0x57eb4edb3c55b65a,
0xaefae51477a06b03, 0xede622920b6b23f1,
0xdab99e59958885c4, 0xe95fab368e45eced,
0x88b402f7fd75539b, 0x11dbcb0218ebb414,
0xaae103b5fcd2a881, 0xd652bdc29f26a119,
0xd59944a37c0752a2, 0x4be76d3346f0495f,
0x857fcae62d8493a5, 0x6f70a4400c562ddb,
0xa6dfbd9fb8e5b88e, 0xcb4ccd500f6bb952,
0xd097ad07a71f26b2, 0x7e2000a41346a7a7,
0x825ecc24c873782f, 0x8ed400668c0c28c8,
0xa2f67f2dfa90563b, 0x728900802f0f32fa,
0xcbb41ef979346bca, 0x4f2b40a03ad2ffb9,
0xfea126b7d78186bc, 0xe2f610c84987bfa8,
0x9f24b832e6b0f436, 0xdd9ca7d2df4d7c9,
0xc6ede63fa05d3143, 0x91503d1c79720dbb,
0xf8a95fcf88747d94, 0x75a44c6397ce912a,
0x9b69dbe1b548ce7c, 0xc986afbe3ee11aba,
0xc24452da229b021b, 0xfbe85badce996168,
0xf2d56790ab41c2a2, 0xfae27299423fb9c3,
0x97c560ba6b0919a5, 0xdccd879fc967d41a,
0xbdb6b8e905cb600f, 0x5400e987bbc1c920,
0xed246723473e3813, 0x290123e9aab23b68,
0x9436c0760c86e30b, 0xf9a0b6720aaf6521,
0xb94470938fa89bce, 0xf808e40e8d5b3e69,
0xe7958cb87392c2c2, 0xb60b1d1230b20e04,
0x90bd77f3483bb9b9, 0xb1c6f22b5e6f48c2,
0xb4ecd5f01a4aa828, 0x1e38aeb6360b1af3,
0xe2280b6c20dd5232, 0x25c6da63c38de1b0,
0x8d590723948a535f, 0x579c487e5a38ad0e,
0xb0af48ec79ace837, 0x2d835a9df0c6d851,
0xdcdb1b2798182244, 0xf8e431456cf88e65,
0x8a08f0f8bf0f156b, 0x1b8e9ecb641b58ff,
0xac8b2d36eed2dac5, 0xe272467e3d222f3f,
0xd7adf884aa879177, 0x5b0ed81dcc6abb0f,
0x86ccbb52ea94baea, 0x98e947129fc2b4e9,
0xa87fea27a539e9a5, 0x3f2398d747b36224,
0xd29fe4b18e88640e, 0x8eec7f0d19a03aad,
0x83a3eeeef9153e89, 0x1953cf68300424ac,
0xa48ceaaab75a8e2b, 0x5fa8c3423c052dd7,
0xcdb02555653131b6, 0x3792f412cb06794d,
0x808e17555f3ebf11, 0xe2bbd88bbee40bd0,
0xa0b19d2ab70e6ed6, 0x5b6aceaeae9d0ec4,
0xc8de047564d20a8b, 0xf245825a5a445275,
0xfb158592be068d2e, 0xeed6e2f0f0d56712,
0x9ced737bb6c4183d, 0x55464dd69685606b,
0xc428d05aa4751e4c, 0xaa97e14c3c26b886,
0xf53304714d9265df, 0xd53dd99f4b3066a8,
0x993fe2c6d07b7fab, 0xe546a8038efe4029,
0xbf8fdb78849a5f96, 0xde98520472bdd033,
0xef73d256a5c0f77c, 0x963e66858f6d4440,
0x95a8637627989aad, 0xdde7001379a44aa8,
0xbb127c53b17ec159, 0x5560c018580d5d52,
0xe9d71b689dde71af, 0xaab8f01e6e10b4a6,
0x9226712162ab070d, 0xcab3961304ca70e8,
0xb6b00d69bb55c8d1, 0x3d607b97c5fd0d22,
0xe45c10c42a2b3b05, 0x8cb89a7db77c506a,
0x8eb98a7a9a5b04e3, 0x77f3608e92adb242,
0xb267ed1940f1c61c, 0x55f038b237591ed3,
0xdf01e85f912e37a3, 0x6b6c46dec52f6688,
0x8b61313bbabce2c6, 0x2323ac4b3b3da015,
0xae397d8aa96c1b77, 0xabec975e0a0d081a,
0xd9c7dced53c72255, 0x96e7bd358c904a21,
0x881cea14545c7575, 0x7e50d64177da2e54,
0xaa242499697392d2, 0xdde50bd1d5d0b9e9,
0xd4ad2dbfc3d07787, 0x955e4ec64b44e864,
0x84ec3c97da624ab4, 0xbd5af13bef0b113e,
0xa6274bbdd0fadd61, 0xecb1ad8aeacdd58e,
0xcfb11ead453994ba, 0x67de18eda5814af2,
0x81ceb32c4b43fcf4, 0x80eacf948770ced7,
0xa2425ff75e14fc31, 0xa1258379a94d028d,
0xcad2f7f5359a3b3e, 0x96ee45813a04330,
0xfd87b5f28300ca0d, 0x8bca9d6e188853fc,
0x9e74d1b791e07e48, 0x775ea264cf55347e,
0xc612062576589dda, 0x95364afe032a819e,
0xf79687aed3eec551, 0x3a83ddbd83f52205,
0x9abe14cd44753b52, 0xc4926a9672793543,
0xc16d9a0095928a27, 0x75b7053c0f178294,
0xf1c90080baf72cb1, 0x5324c68b12dd6339,
0x971da05074da7bee, 0xd3f6fc16ebca5e04,
0xbce5086492111aea, 0x88f4bb1ca6bcf585,
0xec1e4a7db69561a5, 0x2b31e9e3d06c32e6,
0x9392ee8e921d5d07, 0x3aff322e62439fd0,
0xb877aa3236a4b449, 0x9befeb9fad487c3,
0xe69594bec44de15b, 0x4c2ebe687989a9b4,
0x901d7cf73ab0acd9, 0xf9d37014bf60a11,
0xb424dc35095cd80f, 0x538484c19ef38c95,
0xe12e13424bb40e13, 0x2865a5f206b06fba,
0x8cbccc096f5088cb, 0xf93f87b7442e45d4,
0xafebff0bcb24aafe, 0xf78f69a51539d749,
0xdbe6fecebdedd5be, 0xb573440e5a884d1c,
0x89705f4136b4a597, 0x31680a88f8953031,
0xabcc77118461cefc, 0xfdc20d2b36ba7c3e,
0xd6bf94d5e57a42bc, 0x3d32907604691b4d,
0x8637bd05af6c69b5, 0xa63f9a49c2c1b110,
0xa7c5ac471b478423, 0xfcf80dc33721d54,
0xd1b71758e219652b, 0xd3c36113404ea4a9,
0x83126e978d4fdf3b, 0x645a1cac083126ea,
0xa3d70a3d70a3d70a, 0x3d70a3d70a3d70a4,
0xcccccccccccccccc, 0xcccccccccccccccd,
0x8000000000000000, 0x0,
0xa000000000000000, 0x0,
0xc800000000000000, 0x0,
0xfa00000000000000, 0x0,
0x9c40000000000000, 0x0,
0xc350000000000000, 0x0,
0xf424000000000000, 0x0,
0x9896800000000000, 0x0,
0xbebc200000000000, 0x0,
0xee6b280000000000, 0x0,
0x9502f90000000000, 0x0,
0xba43b74000000000, 0x0,
0xe8d4a51000000000, 0x0,
0x9184e72a00000000, 0x0,
0xb5e620f480000000, 0x0,
0xe35fa931a0000000, 0x0,
0x8e1bc9bf04000000, 0x0,
0xb1a2bc2ec5000000, 0x0,
0xde0b6b3a76400000, 0x0,
0x8ac7230489e80000, 0x0,
0xad78ebc5ac620000, 0x0,
0xd8d726b7177a8000, 0x0,
0x878678326eac9000, 0x0,
0xa968163f0a57b400, 0x0,
0xd3c21bcecceda100, 0x0,
0x84595161401484a0, 0x0,
0xa56fa5b99019a5c8, 0x0,
0xcecb8f27f4200f3a, 0x0,
0x813f3978f8940984, 0x4000000000000000,
0xa18f07d736b90be5, 0x5000000000000000,
0xc9f2c9cd04674ede, 0xa400000000000000,
0xfc6f7c4045812296, 0x4d00000000000000,
0x9dc5ada82b70b59d, 0xf020000000000000,
0xc5371912364ce305, 0x6c28000000000000,
0xf684df56c3e01bc6, 0xc732000000000000,
0x9a130b963a6c115c, 0x3c7f400000000000,
0xc097ce7bc90715b3, 0x4b9f100000000000,
0xf0bdc21abb48db20, 0x1e86d40000000000,
0x96769950b50d88f4, 0x1314448000000000,
0xbc143fa4e250eb31, 0x17d955a000000000,
0xeb194f8e1ae525fd, 0x5dcfab0800000000,
0x92efd1b8d0cf37be, 0x5aa1cae500000000,
0xb7abc627050305ad, 0xf14a3d9e40000000,
0xe596b7b0c643c719, 0x6d9ccd05d0000000,
0x8f7e32ce7bea5c6f, 0xe4820023a2000000,
0xb35dbf821ae4f38b, 0xdda2802c8a800000,
0xe0352f62a19e306e, 0xd50b2037ad200000,
0x8c213d9da502de45, 0x4526f422cc340000,
0xaf298d050e4395d6, 0x9670b12b7f410000,
0xdaf3f04651d47b4c, 0x3c0cdd765f114000,
0x88d8762bf324cd0f, 0xa5880a69fb6ac800,
0xab0e93b6efee0053, 0x8eea0d047a457a00,
0xd5d238a4abe98068, 0x72a4904598d6d880,
0x85a36366eb71f041, 0x47a6da2b7f864750,
0xa70c3c40a64e6c51, 0x999090b65f67d924,
0xd0cf4b50cfe20765, 0xfff4b4e3f741cf6d,
0x82818f1281ed449f, 0xbff8f10e7a8921a4,
0xa321f2d7226895c7, 0xaff72d52192b6a0d,
0xcbea6f8ceb02bb39, 0x9bf4f8a69f764490,
0xfee50b7025c36a08, 0x2f236d04753d5b4,
0x9f4f2726179a2245, 0x1d762422c946590,
0xc722f0ef9d80aad6, 0x424d3ad2b7b97ef5,
0xf8ebad2b84e0d58b, 0xd2e0898765a7deb2,
0x9b934c3b330c8577, 0x63cc55f49f88eb2f,
0xc2781f49ffcfa6d5, 0x3cbf6b71c76b25fb,
0xf316271c7fc3908a, 0x8bef464e3945ef7a,
0x97edd871cfda3a56, 0x97758bf0e3cbb5ac,
0xbde94e8e43d0c8ec, 0x3d52eeed1cbea317,
0xed63a231d4c4fb27, 0x4ca7aaa863ee4bdd,
0x945e455f24fb1cf8, 0x8fe8caa93e74ef6a,
0xb975d6b6ee39e436, 0xb3e2fd538e122b44,
0xe7d34c64a9c85d44, 0x60dbbca87196b616,
0x90e40fbeea1d3a4a, 0xbc8955e946fe31cd,
0xb51d13aea4a488dd, 0x6babab6398bdbe41,
0xe264589a4dcdab14, 0xc696963c7eed2dd1,
0x8d7eb76070a08aec, 0xfc1e1de5cf543ca2,
0xb0de65388cc8ada8, 0x3b25a55f43294bcb,
0xdd15fe86affad912, 0x49ef0eb713f39ebe,
0x8a2dbf142dfcc7ab, 0x6e3569326c784337,
0xacb92ed9397bf996, 0x49c2c37f07965404,
0xd7e77a8f87daf7fb, 0xdc33745ec97be906,
0x86f0ac99b4e8dafd, 0x69a028bb3ded71a3,
0xa8acd7c0222311bc, 0xc40832ea0d68ce0c,
0xd2d80db02aabd62b, 0xf50a3fa490c30190,
0x83c7088e1aab65db, 0x792667c6da79e0fa,
0xa4b8cab1a1563f52, 0x577001b891185938,
0xcde6fd5e09abcf26, 0xed4c0226b55e6f86,
0x80b05e5ac60b6178, 0x544f8158315b05b4,
0xa0dc75f1778e39d6, 0x696361ae3db1c721,
0xc913936dd571c84c, 0x3bc3a19cd1e38e9,
0xfb5878494ace3a5f, 0x4ab48a04065c723,
0x9d174b2dcec0e47b, 0x62eb0d64283f9c76,
0xc45d1df942711d9a, 0x3ba5d0bd324f8394,
0xf5746577930d6500, 0xca8f44ec7ee36479,
0x9968bf6abbe85f20, 0x7e998b13cf4e1ecb,
0xbfc2ef456ae276e8, 0x9e3fedd8c321a67e,
0xefb3ab16c59b14a2, 0xc5cfe94ef3ea101e,
0x95d04aee3b80ece5, 0xbba1f1d158724a12,
0xbb445da9ca61281f, 0x2a8a6e45ae8edc97,
0xea1575143cf97226, 0xf52d09d71a3293bd,
0x924d692ca61be758, 0x593c2626705f9c56,
0xb6e0c377cfa2e12e, 0x6f8b2fb00c77836c,
0xe498f455c38b997a, 0xb6dfb9c0f956447,
0x8edf98b59a373fec, 0x4724bd4189bd5eac,
0xb2977ee300c50fe7, 0x58edec91ec2cb657,
0xdf3d5e9bc0f653e1, 0x2f2967b66737e3ed,
0x8b865b215899f46c, 0xbd79e0d20082ee74,
0xae67f1e9aec07187, 0xecd8590680a3aa11,
0xda01ee641a708de9, 0xe80e6f4820cc9495,
0x884134fe908658b2, 0x3109058d147fdcdd,
0xaa51823e34a7eede, 0xbd4b46f0599fd415,
0xd4e5e2cdc1d1ea96, 0x6c9e18ac7007c91a,
0x850fadc09923329e, 0x3e2cf6bc604ddb0,
0xa6539930bf6bff45, 0x84db8346b786151c,
0xcfe87f7cef46ff16, 0xe612641865679a63,
0x81f14fae158c5f6e, 0x4fcb7e8f3f60c07e,
0xa26da3999aef7749, 0xe3be5e330f38f09d,
0xcb090c8001ab551c, 0x5cadf5bfd3072cc5,
0xfdcb4fa002162a63, 0x73d9732fc7c8f7f6,
0x9e9f11c4014dda7e, 0x2867e7fddcdd9afa,
0xc646d63501a1511d, 0xb281e1fd541501b8,
0xf7d88bc24209a565, 0x1f225a7ca91a4226,
0x9ae757596946075f, 0x3375788de9b06958,
0xc1a12d2fc3978937, 0x52d6b1641c83ae,
0xf209787bb47d6b84, 0xc0678c5dbd23a49a,
0x9745eb4d50ce6332, 0xf840b7ba963646e0,
0xbd176620a501fbff, 0xb650e5a93bc3d898,
0xec5d3fa8ce427aff, 0xa3e51f138ab4cebe,
0x93ba47c980e98cdf, 0xc66f336c36b10137,
0xb8a8d9bbe123f017, 0xb80b0047445d4184,
0xe6d3102ad96cec1d, 0xa60dc059157491e5,
0x9043ea1ac7e41392, 0x87c89837ad68db2f,
0xb454e4a179dd1877, 0x29babe4598c311fb,
0xe16a1dc9d8545e94, 0xf4296dd6fef3d67a,
0x8ce2529e2734bb1d, 0x1899e4a65f58660c,
0xb01ae745b101e9e4, 0x5ec05dcff72e7f8f,
0xdc21a1171d42645d, 0x76707543f4fa1f73,
0x899504ae72497eba, 0x6a06494a791c53a8,
0xabfa45da0edbde69, 0x487db9d17636892,
0xd6f8d7509292d603, 0x45a9d2845d3c42b6,
0x865b86925b9bc5c2, 0xb8a2392ba45a9b2,
0xa7f26836f282b732, 0x8e6cac7768d7141e,
0xd1ef0244af2364ff, 0x3207d795430cd926,
0x8335616aed761f1f, 0x7f44e6bd49e807b8,
0xa402b9c5a8d3a6e7, 0x5f16206c9c6209a6,
0xcd036837130890a1, 0x36dba887c37a8c0f,
0x802221226be55a64, 0xc2494954da2c9789,
0xa02aa96b06deb0fd, 0xf2db9baa10b7bd6c,
0xc83553c5c8965d3d, 0x6f92829494e5acc7,
0xfa42a8b73abbf48c, 0xcb772339ba1f17f9,
0x9c69a97284b578d7, 0xff2a760414536efb,
0xc38413cf25e2d70d, 0xfef5138519684aba,
0xf46518c2ef5b8cd1, 0x7eb258665fc25d69,
0x98bf2f79d5993802, 0xef2f773ffbd97a61,
0xbeeefb584aff8603, 0xaafb550ffacfd8fa,
0xeeaaba2e5dbf6784, 0x95ba2a53f983cf38,
0x952ab45cfa97a0b2, 0xdd945a747bf26183,
0xba756174393d88df, 0x94f971119aeef9e4,
0xe912b9d1478ceb17, 0x7a37cd5601aab85d,
0x91abb422ccb812ee, 0xac62e055c10ab33a,
0xb616a12b7fe617aa, 0x577b986b314d6009,
0xe39c49765fdf9d94, 0xed5a7e85fda0b80b,
0x8e41ade9fbebc27d, 0x14588f13be847307,
0xb1d219647ae6b31c, 0x596eb2d8ae258fc8,
0xde469fbd99a05fe3, 0x6fca5f8ed9aef3bb,
0x8aec23d680043bee, 0x25de7bb9480d5854,
0xada72ccc20054ae9, 0xaf561aa79a10ae6a,
0xd910f7ff28069da4, 0x1b2ba1518094da04,
0x87aa9aff79042286, 0x90fb44d2f05d0842,
0xa99541bf57452b28, 0x353a1607ac744a53,
0xd3fa922f2d1675f2, 0x42889b8997915ce8,
0x847c9b5d7c2e09b7, 0x69956135febada11,
0xa59bc234db398c25, 0x43fab9837e699095,
0xcf02b2c21207ef2e, 0x94f967e45e03f4bb,
0x8161afb94b44f57d, 0x1d1be0eebac278f5,
0xa1ba1ba79e1632dc, 0x6462d92a69731732,
0xca28a291859bbf93, 0x7d7b8f7503cfdcfe,
0xfcb2cb35e702af78, 0x5cda735244c3d43e,
0x9defbf01b061adab, 0x3a0888136afa64a7,
0xc56baec21c7a1916, 0x88aaa1845b8fdd0,
0xf6c69a72a3989f5b, 0x8aad549e57273d45,
0x9a3c2087a63f6399, 0x36ac54e2f678864b,
0xc0cb28a98fcf3c7f, 0x84576a1bb416a7dd,
0xf0fdf2d3f3c30b9f, 0x656d44a2a11c51d5,
0x969eb7c47859e743, 0x9f644ae5a4b1b325,
0xbc4665b596706114, 0x873d5d9f0dde1fee,
0xeb57ff22fc0c7959, 0xa90cb506d155a7ea,
0x9316ff75dd87cbd8, 0x9a7f12442d588f2,
0xb7dcbf5354e9bece, 0xc11ed6d538aeb2f,
0xe5d3ef282a242e81, 0x8f1668c8a86da5fa,
0x8fa475791a569d10, 0xf96e017d694487bc,
0xb38d92d760ec4455, 0x37c981dcc395a9ac,
0xe070f78d3927556a, 0x85bbe253f47b1417,
0x8c469ab843b89562, 0x93956d7478ccec8e,
0xaf58416654a6babb, 0x387ac8d1970027b2,
0xdb2e51bfe9d0696a, 0x6997b05fcc0319e,
0x88fcf317f22241e2, 0x441fece3bdf81f03,
0xab3c2fddeeaad25a, 0xd527e81cad7626c3,
0xd60b3bd56a5586f1, 0x8a71e223d8d3b074,
0x85c7056562757456, 0xf6872d5667844e49,
0xa738c6bebb12d16c, 0xb428f8ac016561db,
0xd106f86e69d785c7, 0xe13336d701beba52,
0x82a45b450226b39c, 0xecc0024661173473,
0xa34d721642b06084, 0x27f002d7f95d0190,
0xcc20ce9bd35c78a5, 0x31ec038df7b441f4,
0xff290242c83396ce, 0x7e67047175a15271,
0x9f79a169bd203e41, 0xf0062c6e984d386,
0xc75809c42c684dd1, 0x52c07b78a3e60868,
0xf92e0c3537826145, 0xa7709a56ccdf8a82,
0x9bbcc7a142b17ccb, 0x88a66076400bb691,
0xc2abf989935ddbfe, 0x6acff893d00ea435,
0xf356f7ebf83552fe, 0x583f6b8c4124d43,
0x98165af37b2153de, 0xc3727a337a8b704a,
0xbe1bf1b059e9a8d6, 0x744f18c0592e4c5c,
0xeda2ee1c7064130c, 0x1162def06f79df73,
0x9485d4d1c63e8be7, 0x8addcb5645ac2ba8,
0xb9a74a0637ce2ee1, 0x6d953e2bd7173692,
0xe8111c87c5c1ba99, 0xc8fa8db6ccdd0437,
0x910ab1d4db9914a0, 0x1d9c9892400a22a2,
0xb54d5e4a127f59c8, 0x2503beb6d00cab4b,
0xe2a0b5dc971f303a, 0x2e44ae64840fd61d,
0x8da471a9de737e24, 0x5ceaecfed289e5d2,
0xb10d8e1456105dad, 0x7425a83e872c5f47,
0xdd50f1996b947518, 0xd12f124e28f77719,
0x8a5296ffe33cc92f, 0x82bd6b70d99aaa6f,
0xace73cbfdc0bfb7b, 0x636cc64d1001550b,
0xd8210befd30efa5a, 0x3c47f7e05401aa4e,
0x8714a775e3e95c78, 0x65acfaec34810a71,
0xa8d9d1535ce3b396, 0x7f1839a741a14d0d,
0xd31045a8341ca07c, 0x1ede48111209a050,
0x83ea2b892091e44d, 0x934aed0aab460432,
0xa4e4b66b68b65d60, 0xf81da84d5617853f,
0xce1de40642e3f4b9, 0x36251260ab9d668e,
0x80d2ae83e9ce78f3, 0xc1d72b7c6b426019,
0xa1075a24e4421730, 0xb24cf65b8612f81f,
0xc94930ae1d529cfc, 0xdee033f26797b627,
0xfb9b7cd9a4a7443c, 0x169840ef017da3b1,
0x9d412e0806e88aa5, 0x8e1f289560ee864e,
0xc491798a08a2ad4e, 0xf1a6f2bab92a27e2,
0xf5b5d7ec8acb58a2, 0xae10af696774b1db,
0x9991a6f3d6bf1765, 0xacca6da1e0a8ef29,
0xbff610b0cc6edd3f, 0x17fd090a58d32af3,
0xeff394dcff8a948e, 0xddfc4b4cef07f5b0,
0x95f83d0a1fb69cd9, 0x4abdaf101564f98e,
0xbb764c4ca7a4440f, 0x9d6d1ad41abe37f1,
0xea53df5fd18d5513, 0x84c86189216dc5ed,
0x92746b9be2f8552c, 0x32fd3cf5b4e49bb4,
0xb7118682dbb66a77, 0x3fbc8c33221dc2a1,
0xe4d5e82392a40515, 0xfabaf3feaa5334a,
0x8f05b1163ba6832d, 0x29cb4d87f2a7400e,
0xb2c71d5bca9023f8, 0x743e20e9ef511012,
0xdf78e4b2bd342cf6, 0x914da9246b255416,
0x8bab8eefb6409c1a, 0x1ad089b6c2f7548e,
0xae9672aba3d0c320, 0xa184ac2473b529b1,
0xda3c0f568cc4f3e8, 0xc9e5d72d90a2741e,
0x8865899617fb1871, 0x7e2fa67c7a658892,
0xaa7eebfb9df9de8d, 0xddbb901b98feeab7,
0xd51ea6fa85785631, 0x552a74227f3ea565,
0x8533285c936b35de, 0xd53a88958f87275f,
0xa67ff273b8460356, 0x8a892abaf368f137,
0xd01fef10a657842c, 0x2d2b7569b0432d85,
0x8213f56a67f6b29b, 0x9c3b29620e29fc73,
0xa298f2c501f45f42, 0x8349f3ba91b47b8f,
0xcb3f2f7642717713, 0x241c70a936219a73,
0xfe0efb53d30dd4d7, 0xed238cd383aa0110,
0x9ec95d1463e8a506, 0xf4363804324a40aa,
0xc67bb4597ce2ce48, 0xb143c6053edcd0d5,
0xf81aa16fdc1b81da, 0xdd94b7868e94050a,
0x9b10a4e5e9913128, 0xca7cf2b4191c8326,
0xc1d4ce1f63f57d72, 0xfd1c2f611f63a3f0,
0xf24a01a73cf2dccf, 0xbc633b39673c8cec,
0x976e41088617ca01, 0xd5be0503e085d813,
0xbd49d14aa79dbc82, 0x4b2d8644d8a74e18,
0xec9c459d51852ba2, 0xddf8e7d60ed1219e,
0x93e1ab8252f33b45, 0xcabb90e5c942b503,
0xb8da1662e7b00a17, 0x3d6a751f3b936243,
0xe7109bfba19c0c9d, 0xcc512670a783ad4,
0x906a617d450187e2, 0x27fb2b80668b24c5,
0xb484f9dc9641e9da, 0xb1f9f660802dedf6,
0xe1a63853bbd26451, 0x5e7873f8a0396973,
0x8d07e33455637eb2, 0xdb0b487b6423e1e8,
0xb049dc016abc5e5f, 0x91ce1a9a3d2cda62,
0xdc5c5301c56b75f7, 0x7641a140cc7810fb,
0x89b9b3e11b6329ba, 0xa9e904c87fcb0a9d,
0xac2820d9623bf429, 0x546345fa9fbdcd44,
0xd732290fbacaf133, 0xa97c177947ad4095,
0x867f59a9d4bed6c0, 0x49ed8eabcccc485d,
0xa81f301449ee8c70, 0x5c68f256bfff5a74,
0xd226fc195c6a2f8c, 0x73832eec6fff3111,
0x83585d8fd9c25db7, 0xc831fd53c5ff7eab,
0xa42e74f3d032f525, 0xba3e7ca8b77f5e55,
0xcd3a1230c43fb26f, 0x28ce1bd2e55f35eb,
0x80444b5e7aa7cf85, 0x7980d163cf5b81b3,
0xa0555e361951c366, 0xd7e105bcc332621f,
0xc86ab5c39fa63440, 0x8dd9472bf3fefaa7,
0xfa856334878fc150, 0xb14f98f6f0feb951,
0x9c935e00d4b9d8d2, 0x6ed1bf9a569f33d3,
0xc3b8358109e84f07, 0xa862f80ec4700c8,
0xf4a642e14c6262c8, 0xcd27bb612758c0fa,
0x98e7e9cccfbd7dbd, 0x8038d51cb897789c,
0xbf21e44003acdd2c, 0xe0470a63e6bd56c3,
0xeeea5d5004981478, 0x1858ccfce06cac74,
0x95527a5202df0ccb, 0xf37801e0c43ebc8,
0xbaa718e68396cffd, 0xd30560258f54e6ba,
0xe950df20247c83fd, 0x47c6b82ef32a2069,
0x91d28b7416cdd27e, 0x4cdc331d57fa5441,
0xb6472e511c81471d, 0xe0133fe4adf8e952,
0xe3d8f9e563a198e5, 0x58180fddd97723a6,
0x8e679c2f5e44ff8f, 0x570f09eaa7ea7648,
};
};
#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE
template <class unused>
constexpr uint64_t
powers_template<unused>::power_of_five_128[number_of_entries];
#endif
using powers = powers_template<>;
} // namespace fast_float
#endif
#ifndef FASTFLOAT_DECIMAL_TO_BINARY_H
#define FASTFLOAT_DECIMAL_TO_BINARY_H
#include <cfloat>
#include <cinttypes>
#include <cmath>
#include <cstdint>
#include <cstdlib>
#include <cstring>
namespace fast_float {
// This will compute or rather approximate w * 5**q and return a pair of 64-bit
// words approximating the result, with the "high" part corresponding to the
// most significant bits and the low part corresponding to the least significant
// bits.
//
template <int bit_precision>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 value128
compute_product_approximation(int64_t q, uint64_t w) {
const int index = 2 * int(q - powers::smallest_power_of_five);
// For small values of q, e.g., q in [0,27], the answer is always exact
// because The line value128 firstproduct = full_multiplication(w,
// power_of_five_128[index]); gives the exact answer.
value128 firstproduct =
full_multiplication(w, powers::power_of_five_128[index]);
static_assert((bit_precision >= 0) && (bit_precision <= 64),
" precision should be in (0,64]");
constexpr uint64_t precision_mask =
(bit_precision < 64) ? (uint64_t(0xFFFFFFFFFFFFFFFF) >> bit_precision)
: uint64_t(0xFFFFFFFFFFFFFFFF);
if ((firstproduct.high & precision_mask) ==
precision_mask) { // could further guard with (lower + w < lower)
// regarding the second product, we only need secondproduct.high, but our
// expectation is that the compiler will optimize this extra work away if
// needed.
value128 secondproduct =
full_multiplication(w, powers::power_of_five_128[index + 1]);
firstproduct.low += secondproduct.high;
if (secondproduct.high > firstproduct.low) {
firstproduct.high++;
}
}
return firstproduct;
}
namespace detail {
/**
* For q in (0,350), we have that
* f = (((152170 + 65536) * q ) >> 16);
* is equal to
* floor(p) + q
* where
* p = log(5**q)/log(2) = q * log(5)/log(2)
*
* For negative values of q in (-400,0), we have that
* f = (((152170 + 65536) * q ) >> 16);
* is equal to
* -ceil(p) + q
* where
* p = log(5**-q)/log(2) = -q * log(5)/log(2)
*/
constexpr fastfloat_really_inline int32_t power(int32_t q) noexcept {
return (((152170 + 65536) * q) >> 16) + 63;
}
} // namespace detail
// create an adjusted mantissa, biased by the invalid power2
// for significant digits already multiplied by 10 ** q.
template <typename binary>
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 adjusted_mantissa
compute_error_scaled(int64_t q, uint64_t w, int lz) noexcept {
int hilz = int(w >> 63) ^ 1;
adjusted_mantissa answer;
answer.mantissa = w << hilz;
int bias = binary::mantissa_explicit_bits() - binary::minimum_exponent();
answer.power2 = int32_t(detail::power(int32_t(q)) + bias - hilz - lz - 62 +
invalid_am_bias);
return answer;
}
// w * 10 ** q, without rounding the representation up.
// the power2 in the exponent will be adjusted by invalid_am_bias.
template <typename binary>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
compute_error(int64_t q, uint64_t w) noexcept {
int lz = leading_zeroes(w);
w <<= lz;
value128 product =
compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w);
return compute_error_scaled<binary>(q, product.high, lz);
}
// w * 10 ** q
// The returned value should be a valid ieee64 number that simply need to be
// packed. However, in some very rare cases, the computation will fail. In such
// cases, we return an adjusted_mantissa with a negative power of 2: the caller
// should recompute in such cases.
template <typename binary>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
compute_float(int64_t q, uint64_t w) noexcept {
adjusted_mantissa answer;
if ((w == 0) || (q < binary::smallest_power_of_ten())) {
answer.power2 = 0;
answer.mantissa = 0;
// result should be zero
return answer;
}
if (q > binary::largest_power_of_ten()) {
// we want to get infinity:
answer.power2 = binary::infinite_power();
answer.mantissa = 0;
return answer;
}
// At this point in time q is in [powers::smallest_power_of_five,
// powers::largest_power_of_five].
// We want the most significant bit of i to be 1. Shift if needed.
int lz = leading_zeroes(w);
w <<= lz;
// The required precision is binary::mantissa_explicit_bits() + 3 because
// 1. We need the implicit bit
// 2. We need an extra bit for rounding purposes
// 3. We might lose a bit due to the "upperbit" routine (result too small,
// requiring a shift)
value128 product =
compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w);
// The computed 'product' is always sufficient.
// Mathematical proof:
// Noble Mushtak and Daniel Lemire, Fast Number Parsing Without Fallback (to
// appear) See script/mushtak_lemire.py
// The "compute_product_approximation" function can be slightly slower than a
// branchless approach: value128 product = compute_product(q, w); but in
// practice, we can win big with the compute_product_approximation if its
// additional branch is easily predicted. Which is best is data specific.
int upperbit = int(product.high >> 63);
int shift = upperbit + 64 - binary::mantissa_explicit_bits() - 3;
answer.mantissa = product.high >> shift;
answer.power2 = int32_t(detail::power(int32_t(q)) + upperbit - lz -
binary::minimum_exponent());
if (answer.power2 <= 0) { // we have a subnormal?
// Here have that answer.power2 <= 0 so -answer.power2 >= 0
if (-answer.power2 + 1 >=
64) { // if we have more than 64 bits below the minimum exponent, you
// have a zero for sure.
answer.power2 = 0;
answer.mantissa = 0;
// result should be zero
return answer;
}
// next line is safe because -answer.power2 + 1 < 64
answer.mantissa >>= -answer.power2 + 1;
// Thankfully, we can't have both "round-to-even" and subnormals because
// "round-to-even" only occurs for powers close to 0.
answer.mantissa += (answer.mantissa & 1); // round up
answer.mantissa >>= 1;
// There is a weird scenario where we don't have a subnormal but just.
// Suppose we start with 2.2250738585072013e-308, we end up
// with 0x3fffffffffffff x 2^-1023-53 which is technically subnormal
// whereas 0x40000000000000 x 2^-1023-53 is normal. Now, we need to round
// up 0x3fffffffffffff x 2^-1023-53 and once we do, we are no longer
// subnormal, but we can only know this after rounding.
// So we only declare a subnormal if we are smaller than the threshold.
answer.power2 =
(answer.mantissa < (uint64_t(1) << binary::mantissa_explicit_bits()))
? 0
: 1;
return answer;
}
// usually, we round *up*, but if we fall right in between and and we have an
// even basis, we need to round down
// We are only concerned with the cases where 5**q fits in single 64-bit word.
if ((product.low <= 1) && (q >= binary::min_exponent_round_to_even()) &&
(q <= binary::max_exponent_round_to_even()) &&
((answer.mantissa & 3) == 1)) { // we may fall between two floats!
// To be in-between two floats we need that in doing
// answer.mantissa = product.high >> (upperbit + 64 -
// binary::mantissa_explicit_bits() - 3);
// ... we dropped out only zeroes. But if this happened, then we can go
// back!!!
if ((answer.mantissa << shift) == product.high) {
answer.mantissa &= ~uint64_t(1); // flip it so that we do not round up
}
}
answer.mantissa += (answer.mantissa & 1); // round up
answer.mantissa >>= 1;
if (answer.mantissa >= (uint64_t(2) << binary::mantissa_explicit_bits())) {
answer.mantissa = (uint64_t(1) << binary::mantissa_explicit_bits());
answer.power2++; // undo previous addition
}
answer.mantissa &= ~(uint64_t(1) << binary::mantissa_explicit_bits());
if (answer.power2 >= binary::infinite_power()) { // infinity
answer.power2 = binary::infinite_power();
answer.mantissa = 0;
}
return answer;
}
} // namespace fast_float
#endif
#ifndef FASTFLOAT_BIGINT_H
#define FASTFLOAT_BIGINT_H
#include <algorithm>
#include <cstdint>
#include <climits>
#include <cstring>
namespace fast_float {
// the limb width: we want efficient multiplication of double the bits in
// limb, or for 64-bit limbs, at least 64-bit multiplication where we can
// extract the high and low parts efficiently. this is every 64-bit
// architecture except for sparc, which emulates 128-bit multiplication.
// we might have platforms where `CHAR_BIT` is not 8, so let's avoid
// doing `8 * sizeof(limb)`.
#if defined(FASTFLOAT_64BIT) && !defined(__sparc)
#define FASTFLOAT_64BIT_LIMB 1
typedef uint64_t limb;
constexpr size_t limb_bits = 64;
#else
#define FASTFLOAT_32BIT_LIMB
typedef uint32_t limb;
constexpr size_t limb_bits = 32;
#endif
typedef span<limb> limb_span;
// number of bits in a bigint. this needs to be at least the number
// of bits required to store the largest bigint, which is
// `log2(10**(digits + max_exp))`, or `log2(10**(767 + 342))`, or
// ~3600 bits, so we round to 4000.
constexpr size_t bigint_bits = 4000;
constexpr size_t bigint_limbs = bigint_bits / limb_bits;
// vector-like type that is allocated on the stack. the entire
// buffer is pre-allocated, and only the length changes.
template <uint16_t size> struct stackvec {
limb data[size];
// we never need more than 150 limbs
uint16_t length{0};
stackvec() = default;
stackvec(const stackvec &) = delete;
stackvec &operator=(const stackvec &) = delete;
stackvec(stackvec &&) = delete;
stackvec &operator=(stackvec &&other) = delete;
// create stack vector from existing limb span.
FASTFLOAT_CONSTEXPR20 stackvec(limb_span s) {
FASTFLOAT_ASSERT(try_extend(s));
}
FASTFLOAT_CONSTEXPR14 limb &operator[](size_t index) noexcept {
FASTFLOAT_DEBUG_ASSERT(index < length);
return data[index];
}
FASTFLOAT_CONSTEXPR14 const limb &operator[](size_t index) const noexcept {
FASTFLOAT_DEBUG_ASSERT(index < length);
return data[index];
}
// index from the end of the container
FASTFLOAT_CONSTEXPR14 const limb &rindex(size_t index) const noexcept {
FASTFLOAT_DEBUG_ASSERT(index < length);
size_t rindex = length - index - 1;
return data[rindex];
}
// set the length, without bounds checking.
FASTFLOAT_CONSTEXPR14 void set_len(size_t len) noexcept {
length = uint16_t(len);
}
constexpr size_t len() const noexcept { return length; }
constexpr bool is_empty() const noexcept { return length == 0; }
constexpr size_t capacity() const noexcept { return size; }
// append item to vector, without bounds checking
FASTFLOAT_CONSTEXPR14 void push_unchecked(limb value) noexcept {
data[length] = value;
length++;
}
// append item to vector, returning if item was added
FASTFLOAT_CONSTEXPR14 bool try_push(limb value) noexcept {
if (len() < capacity()) {
push_unchecked(value);
return true;
} else {
return false;
}
}
// add items to the vector, from a span, without bounds checking
FASTFLOAT_CONSTEXPR20 void extend_unchecked(limb_span s) noexcept {
limb *ptr = data + length;
std::copy_n(s.ptr, s.len(), ptr);
set_len(len() + s.len());
}
// try to add items to the vector, returning if items were added
FASTFLOAT_CONSTEXPR20 bool try_extend(limb_span s) noexcept {
if (len() + s.len() <= capacity()) {
extend_unchecked(s);
return true;
} else {
return false;
}
}
// resize the vector, without bounds checking
// if the new size is longer than the vector, assign value to each
// appended item.
FASTFLOAT_CONSTEXPR20
void resize_unchecked(size_t new_len, limb value) noexcept {
if (new_len > len()) {
size_t count = new_len - len();
limb *first = data + len();
limb *last = first + count;
::std::fill(first, last, value);
set_len(new_len);
} else {
set_len(new_len);
}
}
// try to resize the vector, returning if the vector was resized.
FASTFLOAT_CONSTEXPR20 bool try_resize(size_t new_len, limb value) noexcept {
if (new_len > capacity()) {
return false;
} else {
resize_unchecked(new_len, value);
return true;
}
}
// check if any limbs are non-zero after the given index.
// this needs to be done in reverse order, since the index
// is relative to the most significant limbs.
FASTFLOAT_CONSTEXPR14 bool nonzero(size_t index) const noexcept {
while (index < len()) {
if (rindex(index) != 0) {
return true;
}
index++;
}
return false;
}
// normalize the big integer, so most-significant zero limbs are removed.
FASTFLOAT_CONSTEXPR14 void normalize() noexcept {
while (len() > 0 && rindex(0) == 0) {
length--;
}
}
};
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t
empty_hi64(bool &truncated) noexcept {
truncated = false;
return 0;
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
uint64_hi64(uint64_t r0, bool &truncated) noexcept {
truncated = false;
int shl = leading_zeroes(r0);
return r0 << shl;
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
uint64_hi64(uint64_t r0, uint64_t r1, bool &truncated) noexcept {
int shl = leading_zeroes(r0);
if (shl == 0) {
truncated = r1 != 0;
return r0;
} else {
int shr = 64 - shl;
truncated = (r1 << shl) != 0;
return (r0 << shl) | (r1 >> shr);
}
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
uint32_hi64(uint32_t r0, bool &truncated) noexcept {
return uint64_hi64(r0, truncated);
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
uint32_hi64(uint32_t r0, uint32_t r1, bool &truncated) noexcept {
uint64_t x0 = r0;
uint64_t x1 = r1;
return uint64_hi64((x0 << 32) | x1, truncated);
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
uint32_hi64(uint32_t r0, uint32_t r1, uint32_t r2, bool &truncated) noexcept {
uint64_t x0 = r0;
uint64_t x1 = r1;
uint64_t x2 = r2;
return uint64_hi64(x0, (x1 << 32) | x2, truncated);
}
// add two small integers, checking for overflow.
// we want an efficient operation. for msvc, where
// we don't have built-in intrinsics, this is still
// pretty fast.
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 limb
scalar_add(limb x, limb y, bool &overflow) noexcept {
limb z;
// gcc and clang
#if defined(__has_builtin)
#if __has_builtin(__builtin_add_overflow)
if (!cpp20_and_in_constexpr()) {
overflow = __builtin_add_overflow(x, y, &z);
return z;
}
#endif
#endif
// generic, this still optimizes correctly on MSVC.
z = x + y;
overflow = z < x;
return z;
}
// multiply two small integers, getting both the high and low bits.
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 limb
scalar_mul(limb x, limb y, limb &carry) noexcept {
#ifdef FASTFLOAT_64BIT_LIMB
#if defined(__SIZEOF_INT128__)
// GCC and clang both define it as an extension.
__uint128_t z = __uint128_t(x) * __uint128_t(y) + __uint128_t(carry);
carry = limb(z >> limb_bits);
return limb(z);
#else
// fallback, no native 128-bit integer multiplication with carry.
// on msvc, this optimizes identically, somehow.
value128 z = full_multiplication(x, y);
bool overflow;
z.low = scalar_add(z.low, carry, overflow);
z.high += uint64_t(overflow); // cannot overflow
carry = z.high;
return z.low;
#endif
#else
uint64_t z = uint64_t(x) * uint64_t(y) + uint64_t(carry);
carry = limb(z >> limb_bits);
return limb(z);
#endif
}
// add scalar value to bigint starting from offset.
// used in grade school multiplication
template <uint16_t size>
inline FASTFLOAT_CONSTEXPR20 bool small_add_from(stackvec<size> &vec, limb y,
size_t start) noexcept {
size_t index = start;
limb carry = y;
bool overflow;
while (carry != 0 && index < vec.len()) {
vec[index] = scalar_add(vec[index], carry, overflow);
carry = limb(overflow);
index += 1;
}
if (carry != 0) {
FASTFLOAT_TRY(vec.try_push(carry));
}
return true;
}
// add scalar value to bigint.
template <uint16_t size>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
small_add(stackvec<size> &vec, limb y) noexcept {
return small_add_from(vec, y, 0);
}
// multiply bigint by scalar value.
template <uint16_t size>
inline FASTFLOAT_CONSTEXPR20 bool small_mul(stackvec<size> &vec,
limb y) noexcept {
limb carry = 0;
for (size_t index = 0; index < vec.len(); index++) {
vec[index] = scalar_mul(vec[index], y, carry);
}
if (carry != 0) {
FASTFLOAT_TRY(vec.try_push(carry));
}
return true;
}
// add bigint to bigint starting from index.
// used in grade school multiplication
template <uint16_t size>
FASTFLOAT_CONSTEXPR20 bool large_add_from(stackvec<size> &x, limb_span y,
size_t start) noexcept {
// the effective x buffer is from `xstart..x.len()`, so exit early
// if we can't get that current range.
if (x.len() < start || y.len() > x.len() - start) {
FASTFLOAT_TRY(x.try_resize(y.len() + start, 0));
}
bool carry = false;
for (size_t index = 0; index < y.len(); index++) {
limb xi = x[index + start];
limb yi = y[index];
bool c1 = false;
bool c2 = false;
xi = scalar_add(xi, yi, c1);
if (carry) {
xi = scalar_add(xi, 1, c2);
}
x[index + start] = xi;
carry = c1 | c2;
}
// handle overflow
if (carry) {
FASTFLOAT_TRY(small_add_from(x, 1, y.len() + start));
}
return true;
}
// add bigint to bigint.
template <uint16_t size>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
large_add_from(stackvec<size> &x, limb_span y) noexcept {
return large_add_from(x, y, 0);
}
// grade-school multiplication algorithm
template <uint16_t size>
FASTFLOAT_CONSTEXPR20 bool long_mul(stackvec<size> &x, limb_span y) noexcept {
limb_span xs = limb_span(x.data, x.len());
stackvec<size> z(xs);
limb_span zs = limb_span(z.data, z.len());
if (y.len() != 0) {
limb y0 = y[0];
FASTFLOAT_TRY(small_mul(x, y0));
for (size_t index = 1; index < y.len(); index++) {
limb yi = y[index];
stackvec<size> zi;
if (yi != 0) {
// re-use the same buffer throughout
zi.set_len(0);
FASTFLOAT_TRY(zi.try_extend(zs));
FASTFLOAT_TRY(small_mul(zi, yi));
limb_span zis = limb_span(zi.data, zi.len());
FASTFLOAT_TRY(large_add_from(x, zis, index));
}
}
}
x.normalize();
return true;
}
// grade-school multiplication algorithm
template <uint16_t size>
FASTFLOAT_CONSTEXPR20 bool large_mul(stackvec<size> &x, limb_span y) noexcept {
if (y.len() == 1) {
FASTFLOAT_TRY(small_mul(x, y[0]));
} else {
FASTFLOAT_TRY(long_mul(x, y));
}
return true;
}
template <typename = void> struct pow5_tables {
static constexpr uint32_t large_step = 135;
static constexpr uint64_t small_power_of_5[] = {
1UL,
5UL,
25UL,
125UL,
625UL,
3125UL,
15625UL,
78125UL,
390625UL,
1953125UL,
9765625UL,
48828125UL,
244140625UL,
1220703125UL,
6103515625UL,
30517578125UL,
152587890625UL,
762939453125UL,
3814697265625UL,
19073486328125UL,
95367431640625UL,
476837158203125UL,
2384185791015625UL,
11920928955078125UL,
59604644775390625UL,
298023223876953125UL,
1490116119384765625UL,
7450580596923828125UL,
};
#ifdef FASTFLOAT_64BIT_LIMB
constexpr static limb large_power_of_5[] = {
1414648277510068013UL, 9180637584431281687UL, 4539964771860779200UL,
10482974169319127550UL, 198276706040285095UL};
#else
constexpr static limb large_power_of_5[] = {
4279965485U, 329373468U, 4020270615U, 2137533757U, 4287402176U,
1057042919U, 1071430142U, 2440757623U, 381945767U, 46164893U};
#endif
};
#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE
template <typename T> constexpr uint32_t pow5_tables<T>::large_step;
template <typename T> constexpr uint64_t pow5_tables<T>::small_power_of_5[];
template <typename T> constexpr limb pow5_tables<T>::large_power_of_5[];
#endif
// big integer type. implements a small subset of big integer
// arithmetic, using simple algorithms since asymptotically
// faster algorithms are slower for a small number of limbs.
// all operations assume the big-integer is normalized.
struct bigint : pow5_tables<> {
// storage of the limbs, in little-endian order.
stackvec<bigint_limbs> vec;
FASTFLOAT_CONSTEXPR20 bigint() : vec() {}
bigint(const bigint &) = delete;
bigint &operator=(const bigint &) = delete;
bigint(bigint &&) = delete;
bigint &operator=(bigint &&other) = delete;
FASTFLOAT_CONSTEXPR20 bigint(uint64_t value) : vec() {
#ifdef FASTFLOAT_64BIT_LIMB
vec.push_unchecked(value);
#else
vec.push_unchecked(uint32_t(value));
vec.push_unchecked(uint32_t(value >> 32));
#endif
vec.normalize();
}
// get the high 64 bits from the vector, and if bits were truncated.
// this is to get the significant digits for the float.
FASTFLOAT_CONSTEXPR20 uint64_t hi64(bool &truncated) const noexcept {
#ifdef FASTFLOAT_64BIT_LIMB
if (vec.len() == 0) {
return empty_hi64(truncated);
} else if (vec.len() == 1) {
return uint64_hi64(vec.rindex(0), truncated);
} else {
uint64_t result = uint64_hi64(vec.rindex(0), vec.rindex(1), truncated);
truncated |= vec.nonzero(2);
return result;
}
#else
if (vec.len() == 0) {
return empty_hi64(truncated);
} else if (vec.len() == 1) {
return uint32_hi64(vec.rindex(0), truncated);
} else if (vec.len() == 2) {
return uint32_hi64(vec.rindex(0), vec.rindex(1), truncated);
} else {
uint64_t result =
uint32_hi64(vec.rindex(0), vec.rindex(1), vec.rindex(2), truncated);
truncated |= vec.nonzero(3);
return result;
}
#endif
}
// compare two big integers, returning the large value.
// assumes both are normalized. if the return value is
// negative, other is larger, if the return value is
// positive, this is larger, otherwise they are equal.
// the limbs are stored in little-endian order, so we
// must compare the limbs in ever order.
FASTFLOAT_CONSTEXPR20 int compare(const bigint &other) const noexcept {
if (vec.len() > other.vec.len()) {
return 1;
} else if (vec.len() < other.vec.len()) {
return -1;
} else {
for (size_t index = vec.len(); index > 0; index--) {
limb xi = vec[index - 1];
limb yi = other.vec[index - 1];
if (xi > yi) {
return 1;
} else if (xi < yi) {
return -1;
}
}
return 0;
}
}
// shift left each limb n bits, carrying over to the new limb
// returns true if we were able to shift all the digits.
FASTFLOAT_CONSTEXPR20 bool shl_bits(size_t n) noexcept {
// Internally, for each item, we shift left by n, and add the previous
// right shifted limb-bits.
// For example, we transform (for u8) shifted left 2, to:
// b10100100 b01000010
// b10 b10010001 b00001000
FASTFLOAT_DEBUG_ASSERT(n != 0);
FASTFLOAT_DEBUG_ASSERT(n < sizeof(limb) * 8);
size_t shl = n;
size_t shr = limb_bits - shl;
limb prev = 0;
for (size_t index = 0; index < vec.len(); index++) {
limb xi = vec[index];
vec[index] = (xi << shl) | (prev >> shr);
prev = xi;
}
limb carry = prev >> shr;
if (carry != 0) {
return vec.try_push(carry);
}
return true;
}
// move the limbs left by `n` limbs.
FASTFLOAT_CONSTEXPR20 bool shl_limbs(size_t n) noexcept {
FASTFLOAT_DEBUG_ASSERT(n != 0);
if (n + vec.len() > vec.capacity()) {
return false;
} else if (!vec.is_empty()) {
// move limbs
limb *dst = vec.data + n;
const limb *src = vec.data;
std::copy_backward(src, src + vec.len(), dst + vec.len());
// fill in empty limbs
limb *first = vec.data;
limb *last = first + n;
::std::fill(first, last, 0);
vec.set_len(n + vec.len());
return true;
} else {
return true;
}
}
// move the limbs left by `n` bits.
FASTFLOAT_CONSTEXPR20 bool shl(size_t n) noexcept {
size_t rem = n % limb_bits;
size_t div = n / limb_bits;
if (rem != 0) {
FASTFLOAT_TRY(shl_bits(rem));
}
if (div != 0) {
FASTFLOAT_TRY(shl_limbs(div));
}
return true;
}
// get the number of leading zeros in the bigint.
FASTFLOAT_CONSTEXPR20 int ctlz() const noexcept {
if (vec.is_empty()) {
return 0;
} else {
#ifdef FASTFLOAT_64BIT_LIMB
return leading_zeroes(vec.rindex(0));
#else
// no use defining a specialized leading_zeroes for a 32-bit type.
uint64_t r0 = vec.rindex(0);
return leading_zeroes(r0 << 32);
#endif
}
}
// get the number of bits in the bigint.
FASTFLOAT_CONSTEXPR20 int bit_length() const noexcept {
int lz = ctlz();
return int(limb_bits * vec.len()) - lz;
}
FASTFLOAT_CONSTEXPR20 bool mul(limb y) noexcept { return small_mul(vec, y); }
FASTFLOAT_CONSTEXPR20 bool add(limb y) noexcept { return small_add(vec, y); }
// multiply as if by 2 raised to a power.
FASTFLOAT_CONSTEXPR20 bool pow2(uint32_t exp) noexcept { return shl(exp); }
// multiply as if by 5 raised to a power.
FASTFLOAT_CONSTEXPR20 bool pow5(uint32_t exp) noexcept {
// multiply by a power of 5
size_t large_length = sizeof(large_power_of_5) / sizeof(limb);
limb_span large = limb_span(large_power_of_5, large_length);
while (exp >= large_step) {
FASTFLOAT_TRY(large_mul(vec, large));
exp -= large_step;
}
#ifdef FASTFLOAT_64BIT_LIMB
uint32_t small_step = 27;
limb max_native = 7450580596923828125UL;
#else
uint32_t small_step = 13;
limb max_native = 1220703125U;
#endif
while (exp >= small_step) {
FASTFLOAT_TRY(small_mul(vec, max_native));
exp -= small_step;
}
if (exp != 0) {
// Work around clang bug https://godbolt.org/z/zedh7rrhc
// This is similar to https://github.com/llvm/llvm-project/issues/47746,
// except the workaround described there don't work here
FASTFLOAT_TRY(small_mul(
vec, limb(((void)small_power_of_5[0], small_power_of_5[exp]))));
}
return true;
}
// multiply as if by 10 raised to a power.
FASTFLOAT_CONSTEXPR20 bool pow10(uint32_t exp) noexcept {
FASTFLOAT_TRY(pow5(exp));
return pow2(exp);
}
};
} // namespace fast_float
#endif
#ifndef FASTFLOAT_DIGIT_COMPARISON_H
#define FASTFLOAT_DIGIT_COMPARISON_H
#include <algorithm>
#include <cstdint>
#include <cstring>
#include <iterator>
namespace fast_float {
// 1e0 to 1e19
constexpr static uint64_t powers_of_ten_uint64[] = {1UL,
10UL,
100UL,
1000UL,
10000UL,
100000UL,
1000000UL,
10000000UL,
100000000UL,
1000000000UL,
10000000000UL,
100000000000UL,
1000000000000UL,
10000000000000UL,
100000000000000UL,
1000000000000000UL,
10000000000000000UL,
100000000000000000UL,
1000000000000000000UL,
10000000000000000000UL};
// calculate the exponent, in scientific notation, of the number.
// this algorithm is not even close to optimized, but it has no practical
// effect on performance: in order to have a faster algorithm, we'd need
// to slow down performance for faster algorithms, and this is still fast.
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 int32_t
scientific_exponent(parsed_number_string_t<UC> &num) noexcept {
uint64_t mantissa = num.mantissa;
int32_t exponent = int32_t(num.exponent);
while (mantissa >= 10000) {
mantissa /= 10000;
exponent += 4;
}
while (mantissa >= 100) {
mantissa /= 100;
exponent += 2;
}
while (mantissa >= 10) {
mantissa /= 10;
exponent += 1;
}
return exponent;
}
// this converts a native floating-point number to an extended-precision float.
template <typename T>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
to_extended(T value) noexcept {
using equiv_uint = typename binary_format<T>::equiv_uint;
constexpr equiv_uint exponent_mask = binary_format<T>::exponent_mask();
constexpr equiv_uint mantissa_mask = binary_format<T>::mantissa_mask();
constexpr equiv_uint hidden_bit_mask = binary_format<T>::hidden_bit_mask();
adjusted_mantissa am;
int32_t bias = binary_format<T>::mantissa_explicit_bits() -
binary_format<T>::minimum_exponent();
equiv_uint bits;
#if FASTFLOAT_HAS_BIT_CAST
bits = std::bit_cast<equiv_uint>(value);
#else
::memcpy(&bits, &value, sizeof(T));
#endif
if ((bits & exponent_mask) == 0) {
// denormal
am.power2 = 1 - bias;
am.mantissa = bits & mantissa_mask;
} else {
// normal
am.power2 = int32_t((bits & exponent_mask) >>
binary_format<T>::mantissa_explicit_bits());
am.power2 -= bias;
am.mantissa = (bits & mantissa_mask) | hidden_bit_mask;
}
return am;
}
// get the extended precision value of the halfway point between b and b+u.
// we are given a native float that represents b, so we need to adjust it
// halfway between b and b+u.
template <typename T>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
to_extended_halfway(T value) noexcept {
adjusted_mantissa am = to_extended(value);
am.mantissa <<= 1;
am.mantissa += 1;
am.power2 -= 1;
return am;
}
// round an extended-precision float to the nearest machine float.
template <typename T, typename callback>
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void round(adjusted_mantissa &am,
callback cb) noexcept {
int32_t mantissa_shift = 64 - binary_format<T>::mantissa_explicit_bits() - 1;
if (-am.power2 >= mantissa_shift) {
// have a denormal float
int32_t shift = -am.power2 + 1;
cb(am, std::min<int32_t>(shift, 64));
// check for round-up: if rounding-nearest carried us to the hidden bit.
am.power2 = (am.mantissa <
(uint64_t(1) << binary_format<T>::mantissa_explicit_bits()))
? 0
: 1;
return;
}
// have a normal float, use the default shift.
cb(am, mantissa_shift);
// check for carry
if (am.mantissa >=
(uint64_t(2) << binary_format<T>::mantissa_explicit_bits())) {
am.mantissa = (uint64_t(1) << binary_format<T>::mantissa_explicit_bits());
am.power2++;
}
// check for infinite: we could have carried to an infinite power
am.mantissa &= ~(uint64_t(1) << binary_format<T>::mantissa_explicit_bits());
if (am.power2 >= binary_format<T>::infinite_power()) {
am.power2 = binary_format<T>::infinite_power();
am.mantissa = 0;
}
}
template <typename callback>
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void
round_nearest_tie_even(adjusted_mantissa &am, int32_t shift,
callback cb) noexcept {
const uint64_t mask = (shift == 64) ? UINT64_MAX : (uint64_t(1) << shift) - 1;
const uint64_t halfway = (shift == 0) ? 0 : uint64_t(1) << (shift - 1);
uint64_t truncated_bits = am.mantissa & mask;
bool is_above = truncated_bits > halfway;
bool is_halfway = truncated_bits == halfway;
// shift digits into position
if (shift == 64) {
am.mantissa = 0;
} else {
am.mantissa >>= shift;
}
am.power2 += shift;
bool is_odd = (am.mantissa & 1) == 1;
am.mantissa += uint64_t(cb(is_odd, is_halfway, is_above));
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void
round_down(adjusted_mantissa &am, int32_t shift) noexcept {
if (shift == 64) {
am.mantissa = 0;
} else {
am.mantissa >>= shift;
}
am.power2 += shift;
}
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
skip_zeros(UC const *&first, UC const *last) noexcept {
uint64_t val;
while (!cpp20_and_in_constexpr() &&
std::distance(first, last) >= int_cmp_len<UC>()) {
::memcpy(&val, first, sizeof(uint64_t));
if (val != int_cmp_zeros<UC>()) {
break;
}
first += int_cmp_len<UC>();
}
while (first != last) {
if (*first != UC('0')) {
break;
}
first++;
}
}
// determine if any non-zero digits were truncated.
// all characters must be valid digits.
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
is_truncated(UC const *first, UC const *last) noexcept {
// do 8-bit optimizations, can just compare to 8 literal 0s.
uint64_t val;
while (!cpp20_and_in_constexpr() &&
std::distance(first, last) >= int_cmp_len<UC>()) {
::memcpy(&val, first, sizeof(uint64_t));
if (val != int_cmp_zeros<UC>()) {
return true;
}
first += int_cmp_len<UC>();
}
while (first != last) {
if (*first != UC('0')) {
return true;
}
++first;
}
return false;
}
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
is_truncated(span<const UC> s) noexcept {
return is_truncated(s.ptr, s.ptr + s.len());
}
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
parse_eight_digits(const UC *&p, limb &value, size_t &counter,
size_t &count) noexcept {
value = value * 100000000 + parse_eight_digits_unrolled(p);
p += 8;
counter += 8;
count += 8;
}
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void
parse_one_digit(UC const *&p, limb &value, size_t &counter,
size_t &count) noexcept {
value = value * 10 + limb(*p - UC('0'));
p++;
counter++;
count++;
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
add_native(bigint &big, limb power, limb value) noexcept {
big.mul(power);
big.add(value);
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
round_up_bigint(bigint &big, size_t &count) noexcept {
// need to round-up the digits, but need to avoid rounding
// ....9999 to ...10000, which could cause a false halfway point.
add_native(big, 10, 1);
count++;
}
// parse the significant digits into a big integer
template <typename UC>
inline FASTFLOAT_CONSTEXPR20 void
parse_mantissa(bigint &result, parsed_number_string_t<UC> &num,
size_t max_digits, size_t &digits) noexcept {
// try to minimize the number of big integer and scalar multiplication.
// therefore, try to parse 8 digits at a time, and multiply by the largest
// scalar value (9 or 19 digits) for each step.
size_t counter = 0;
digits = 0;
limb value = 0;
#ifdef FASTFLOAT_64BIT_LIMB
size_t step = 19;
#else
size_t step = 9;
#endif
// process all integer digits.
UC const *p = num.integer.ptr;
UC const *pend = p + num.integer.len();
skip_zeros(p, pend);
// process all digits, in increments of step per loop
while (p != pend) {
while ((std::distance(p, pend) >= 8) && (step - counter >= 8) &&
(max_digits - digits >= 8)) {
parse_eight_digits(p, value, counter, digits);
}
while (counter < step && p != pend && digits < max_digits) {
parse_one_digit(p, value, counter, digits);
}
if (digits == max_digits) {
// add the temporary value, then check if we've truncated any digits
add_native(result, limb(powers_of_ten_uint64[counter]), value);
bool truncated = is_truncated(p, pend);
if (num.fraction.ptr != nullptr) {
truncated |= is_truncated(num.fraction);
}
if (truncated) {
round_up_bigint(result, digits);
}
return;
} else {
add_native(result, limb(powers_of_ten_uint64[counter]), value);
counter = 0;
value = 0;
}
}
// add our fraction digits, if they're available.
if (num.fraction.ptr != nullptr) {
p = num.fraction.ptr;
pend = p + num.fraction.len();
if (digits == 0) {
skip_zeros(p, pend);
}
// process all digits, in increments of step per loop
while (p != pend) {
while ((std::distance(p, pend) >= 8) && (step - counter >= 8) &&
(max_digits - digits >= 8)) {
parse_eight_digits(p, value, counter, digits);
}
while (counter < step && p != pend && digits < max_digits) {
parse_one_digit(p, value, counter, digits);
}
if (digits == max_digits) {
// add the temporary value, then check if we've truncated any digits
add_native(result, limb(powers_of_ten_uint64[counter]), value);
bool truncated = is_truncated(p, pend);
if (truncated) {
round_up_bigint(result, digits);
}
return;
} else {
add_native(result, limb(powers_of_ten_uint64[counter]), value);
counter = 0;
value = 0;
}
}
}
if (counter != 0) {
add_native(result, limb(powers_of_ten_uint64[counter]), value);
}
}
template <typename T>
inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
positive_digit_comp(bigint &bigmant, int32_t exponent) noexcept {
FASTFLOAT_ASSERT(bigmant.pow10(uint32_t(exponent)));
adjusted_mantissa answer;
bool truncated;
answer.mantissa = bigmant.hi64(truncated);
int bias = binary_format<T>::mantissa_explicit_bits() -
binary_format<T>::minimum_exponent();
answer.power2 = bigmant.bit_length() - 64 + bias;
round<T>(answer, [truncated](adjusted_mantissa &a, int32_t shift) {
round_nearest_tie_even(
a, shift,
[truncated](bool is_odd, bool is_halfway, bool is_above) -> bool {
return is_above || (is_halfway && truncated) ||
(is_odd && is_halfway);
});
});
return answer;
}
// the scaling here is quite simple: we have, for the real digits `m * 10^e`,
// and for the theoretical digits `n * 2^f`. Since `e` is always negative,
// to scale them identically, we do `n * 2^f * 5^-f`, so we now have `m * 2^e`.
// we then need to scale by `2^(f- e)`, and then the two significant digits
// are of the same magnitude.
template <typename T>
inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa negative_digit_comp(
bigint &bigmant, adjusted_mantissa am, int32_t exponent) noexcept {
bigint &real_digits = bigmant;
int32_t real_exp = exponent;
// get the value of `b`, rounded down, and get a bigint representation of b+h
adjusted_mantissa am_b = am;
// gcc7 buf: use a lambda to remove the noexcept qualifier bug with
// -Wnoexcept-type.
round<T>(am_b,
[](adjusted_mantissa &a, int32_t shift) { round_down(a, shift); });
T b;
to_float(false, am_b, b);
adjusted_mantissa theor = to_extended_halfway(b);
bigint theor_digits(theor.mantissa);
int32_t theor_exp = theor.power2;
// scale real digits and theor digits to be same power.
int32_t pow2_exp = theor_exp - real_exp;
uint32_t pow5_exp = uint32_t(-real_exp);
if (pow5_exp != 0) {
FASTFLOAT_ASSERT(theor_digits.pow5(pow5_exp));
}
if (pow2_exp > 0) {
FASTFLOAT_ASSERT(theor_digits.pow2(uint32_t(pow2_exp)));
} else if (pow2_exp < 0) {
FASTFLOAT_ASSERT(real_digits.pow2(uint32_t(-pow2_exp)));
}
// compare digits, and use it to director rounding
int ord = real_digits.compare(theor_digits);
adjusted_mantissa answer = am;
round<T>(answer, [ord](adjusted_mantissa &a, int32_t shift) {
round_nearest_tie_even(
a, shift, [ord](bool is_odd, bool _, bool __) -> bool {
(void)_; // not needed, since we've done our comparison
(void)__; // not needed, since we've done our comparison
if (ord > 0) {
return true;
} else if (ord < 0) {
return false;
} else {
return is_odd;
}
});
});
return answer;
}
// parse the significant digits as a big integer to unambiguously round the
// the significant digits. here, we are trying to determine how to round
// an extended float representation close to `b+h`, halfway between `b`
// (the float rounded-down) and `b+u`, the next positive float. this
// algorithm is always correct, and uses one of two approaches. when
// the exponent is positive relative to the significant digits (such as
// 1234), we create a big-integer representation, get the high 64-bits,
// determine if any lower bits are truncated, and use that to direct
// rounding. in case of a negative exponent relative to the significant
// digits (such as 1.2345), we create a theoretical representation of
// `b` as a big-integer type, scaled to the same binary exponent as
// the actual digits. we then compare the big integer representations
// of both, and use that to direct rounding.
template <typename T, typename UC>
inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
digit_comp(parsed_number_string_t<UC> &num, adjusted_mantissa am) noexcept {
// remove the invalid exponent bias
am.power2 -= invalid_am_bias;
int32_t sci_exp = scientific_exponent(num);
size_t max_digits = binary_format<T>::max_digits();
size_t digits = 0;
bigint bigmant;
parse_mantissa(bigmant, num, max_digits, digits);
// can't underflow, since digits is at most max_digits.
int32_t exponent = sci_exp + 1 - int32_t(digits);
if (exponent >= 0) {
return positive_digit_comp<T>(bigmant, exponent);
} else {
return negative_digit_comp<T>(bigmant, am, exponent);
}
}
} // namespace fast_float
#endif
#ifndef FASTFLOAT_PARSE_NUMBER_H
#define FASTFLOAT_PARSE_NUMBER_H
#include <cmath>
#include <cstring>
#include <limits>
#include <system_error>
namespace fast_float {
namespace detail {
/**
* Special case +inf, -inf, nan, infinity, -infinity.
* The case comparisons could be made much faster given that we know that the
* strings a null-free and fixed.
**/
template <typename T, typename UC>
from_chars_result_t<UC> FASTFLOAT_CONSTEXPR14 parse_infnan(UC const *first,
UC const *last,
T &value) noexcept {
from_chars_result_t<UC> answer{};
answer.ptr = first;
answer.ec = std::errc(); // be optimistic
bool minusSign = false;
if (*first ==
UC('-')) { // assume first < last, so dereference without checks;
// C++17 20.19.3.(7.1) explicitly forbids '+' here
minusSign = true;
++first;
}
#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default
if (*first == UC('+')) {
++first;
}
#endif
if (last - first >= 3) {
if (fastfloat_strncasecmp(first, str_const_nan<UC>(), 3)) {
answer.ptr = (first += 3);
value = minusSign ? -std::numeric_limits<T>::quiet_NaN()
: std::numeric_limits<T>::quiet_NaN();
// Check for possible nan(n-char-seq-opt), C++17 20.19.3.7,
// C11 7.20.1.3.3. At least MSVC produces nan(ind) and nan(snan).
if (first != last && *first == UC('(')) {
for (UC const *ptr = first + 1; ptr != last; ++ptr) {
if (*ptr == UC(')')) {
answer.ptr = ptr + 1; // valid nan(n-char-seq-opt)
break;
} else if (!((UC('a') <= *ptr && *ptr <= UC('z')) ||
(UC('A') <= *ptr && *ptr <= UC('Z')) ||
(UC('0') <= *ptr && *ptr <= UC('9')) || *ptr == UC('_')))
break; // forbidden char, not nan(n-char-seq-opt)
}
}
return answer;
}
if (fastfloat_strncasecmp(first, str_const_inf<UC>(), 3)) {
if ((last - first >= 8) &&
fastfloat_strncasecmp(first + 3, str_const_inf<UC>() + 3, 5)) {
answer.ptr = first + 8;
} else {
answer.ptr = first + 3;
}
value = minusSign ? -std::numeric_limits<T>::infinity()
: std::numeric_limits<T>::infinity();
return answer;
}
}
answer.ec = std::errc::invalid_argument;
return answer;
}
/**
* Returns true if the floating-pointing rounding mode is to 'nearest'.
* It is the default on most system. This function is meant to be inexpensive.
* Credit : @mwalcott3
*/
fastfloat_really_inline bool rounds_to_nearest() noexcept {
// https://lemire.me/blog/2020/06/26/gcc-not-nearest/
#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
return false;
#endif
// See
// A fast function to check your floating-point rounding mode
// https://lemire.me/blog/2022/11/16/a-fast-function-to-check-your-floating-point-rounding-mode/
//
// This function is meant to be equivalent to :
// prior: #include <cfenv>
// return fegetround() == FE_TONEAREST;
// However, it is expected to be much faster than the fegetround()
// function call.
//
// The volatile keywoard prevents the compiler from computing the function
// at compile-time.
// There might be other ways to prevent compile-time optimizations (e.g.,
// asm). The value does not need to be std::numeric_limits<float>::min(), any
// small value so that 1 + x should round to 1 would do (after accounting for
// excess precision, as in 387 instructions).
static volatile float fmin = std::numeric_limits<float>::min();
float fmini = fmin; // we copy it so that it gets loaded at most once.
//
// Explanation:
// Only when fegetround() == FE_TONEAREST do we have that
// fmin + 1.0f == 1.0f - fmin.
//
// FE_UPWARD:
// fmin + 1.0f > 1
// 1.0f - fmin == 1
//
// FE_DOWNWARD or FE_TOWARDZERO:
// fmin + 1.0f == 1
// 1.0f - fmin < 1
//
// Note: This may fail to be accurate if fast-math has been
// enabled, as rounding conventions may not apply.
#ifdef FASTFLOAT_VISUAL_STUDIO
#pragma warning(push)
// todo: is there a VS warning?
// see
// https://stackoverflow.com/questions/46079446/is-there-a-warning-for-floating-point-equality-checking-in-visual-studio-2013
#elif defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wfloat-equal"
#elif defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wfloat-equal"
#endif
return (fmini + 1.0f == 1.0f - fmini);
#ifdef FASTFLOAT_VISUAL_STUDIO
#pragma warning(pop)
#elif defined(__clang__)
#pragma clang diagnostic pop
#elif defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
}
} // namespace detail
template <typename T> struct from_chars_caller {
template <typename UC>
FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC>
call(UC const *first, UC const *last, T &value,
parse_options_t<UC> options) noexcept {
return from_chars_advanced(first, last, value, options);
}
};
#if __STDCPP_FLOAT32_T__ == 1
template <> struct from_chars_caller<std::float32_t> {
template <typename UC>
FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC>
call(UC const *first, UC const *last, std::float32_t &value,
parse_options_t<UC> options) noexcept {
// if std::float32_t is defined, and we are in C++23 mode; macro set for
// float32; set value to float due to equivalence between float and
// float32_t
float val;
auto ret = from_chars_advanced(first, last, val, options);
value = val;
return ret;
}
};
#endif
#if __STDCPP_FLOAT64_T__ == 1
template <> struct from_chars_caller<std::float64_t> {
template <typename UC>
FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC>
call(UC const *first, UC const *last, std::float64_t &value,
parse_options_t<UC> options) noexcept {
// if std::float64_t is defined, and we are in C++23 mode; macro set for
// float64; set value as double due to equivalence between double and
// float64_t
double val;
auto ret = from_chars_advanced(first, last, val, options);
value = val;
return ret;
}
};
#endif
template <typename T, typename UC, typename>
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
from_chars(UC const *first, UC const *last, T &value,
chars_format fmt /*= chars_format::general*/) noexcept {
return from_chars_caller<T>::call(first, last, value,
parse_options_t<UC>(fmt));
}
/**
* This function overload takes parsed_number_string_t structure that is created
* and populated either by from_chars_advanced function taking chars range and
* parsing options or other parsing custom function implemented by user.
*/
template <typename T, typename UC>
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
from_chars_advanced(parsed_number_string_t<UC> &pns, T &value) noexcept {
static_assert(is_supported_float_type<T>(),
"only some floating-point types are supported");
static_assert(is_supported_char_type<UC>(),
"only char, wchar_t, char16_t and char32_t are supported");
from_chars_result_t<UC> answer;
answer.ec = std::errc(); // be optimistic
answer.ptr = pns.lastmatch;
// The implementation of the Clinger's fast path is convoluted because
// we want round-to-nearest in all cases, irrespective of the rounding mode
// selected on the thread.
// We proceed optimistically, assuming that detail::rounds_to_nearest()
// returns true.
if (binary_format<T>::min_exponent_fast_path() <= pns.exponent &&
pns.exponent <= binary_format<T>::max_exponent_fast_path() &&
!pns.too_many_digits) {
// Unfortunately, the conventional Clinger's fast path is only possible
// when the system rounds to the nearest float.
//
// We expect the next branch to almost always be selected.
// We could check it first (before the previous branch), but
// there might be performance advantages at having the check
// be last.
if (!cpp20_and_in_constexpr() && detail::rounds_to_nearest()) {
// We have that fegetround() == FE_TONEAREST.
// Next is Clinger's fast path.
if (pns.mantissa <= binary_format<T>::max_mantissa_fast_path()) {
value = T(pns.mantissa);
if (pns.exponent < 0) {
value = value / binary_format<T>::exact_power_of_ten(-pns.exponent);
} else {
value = value * binary_format<T>::exact_power_of_ten(pns.exponent);
}
if (pns.negative) {
value = -value;
}
return answer;
}
} else {
// We do not have that fegetround() == FE_TONEAREST.
// Next is a modified Clinger's fast path, inspired by Jakub Jelínek's
// proposal
if (pns.exponent >= 0 &&
pns.mantissa <=
binary_format<T>::max_mantissa_fast_path(pns.exponent)) {
#if defined(__clang__) || defined(FASTFLOAT_32BIT)
// Clang may map 0 to -0.0 when fegetround() == FE_DOWNWARD
if (pns.mantissa == 0) {
value = pns.negative ? T(-0.) : T(0.);
return answer;
}
#endif
value = T(pns.mantissa) *
binary_format<T>::exact_power_of_ten(pns.exponent);
if (pns.negative) {
value = -value;
}
return answer;
}
}
}
adjusted_mantissa am =
compute_float<binary_format<T>>(pns.exponent, pns.mantissa);
if (pns.too_many_digits && am.power2 >= 0) {
if (am != compute_float<binary_format<T>>(pns.exponent, pns.mantissa + 1)) {
am = compute_error<binary_format<T>>(pns.exponent, pns.mantissa);
}
}
// If we called compute_float<binary_format<T>>(pns.exponent, pns.mantissa)
// and we have an invalid power (am.power2 < 0), then we need to go the long
// way around again. This is very uncommon.
if (am.power2 < 0) {
am = digit_comp<T>(pns, am);
}
to_float(pns.negative, am, value);
// Test for over/underflow.
if ((pns.mantissa != 0 && am.mantissa == 0 && am.power2 == 0) ||
am.power2 == binary_format<T>::infinite_power()) {
answer.ec = std::errc::result_out_of_range;
}
return answer;
}
template <typename T, typename UC>
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
from_chars_advanced(UC const *first, UC const *last, T &value,
parse_options_t<UC> options) noexcept {
static_assert(is_supported_float_type<T>(),
"only some floating-point types are supported");
static_assert(is_supported_char_type<UC>(),
"only char, wchar_t, char16_t and char32_t are supported");
from_chars_result_t<UC> answer;
#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default
while ((first != last) && fast_float::is_space(uint8_t(*first))) {
first++;
}
#endif
if (first == last) {
answer.ec = std::errc::invalid_argument;
answer.ptr = first;
return answer;
}
parsed_number_string_t<UC> pns =
parse_number_string<UC>(first, last, options);
if (!pns.valid) {
if (options.format & chars_format::no_infnan) {
answer.ec = std::errc::invalid_argument;
answer.ptr = first;
return answer;
} else {
return detail::parse_infnan(first, last, value);
}
}
// call overload that takes parsed_number_string_t directly.
return from_chars_advanced(pns, value);
}
template <typename T, typename UC, typename>
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
from_chars(UC const *first, UC const *last, T &value, int base) noexcept {
static_assert(is_supported_char_type<UC>(),
"only char, wchar_t, char16_t and char32_t are supported");
from_chars_result_t<UC> answer;
#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default
while ((first != last) && fast_float::is_space(uint8_t(*first))) {
first++;
}
#endif
if (first == last || base < 2 || base > 36) {
answer.ec = std::errc::invalid_argument;
answer.ptr = first;
return answer;
}
return parse_int_string(first, last, value, base);
}
} // namespace fast_float
#endif
|