1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
|
#pragma once
#include <type_traits>
#include "StarNetElement.hpp"
#include "StarString.hpp"
#include "StarByteArray.hpp"
namespace Star {
template <typename T>
class NetElementBasicField : public NetElement {
public:
virtual ~NetElementBasicField() = default;
T const& get() const;
// Updates the value if the value is different than the existing value,
// requires T have operator==
void set(T const& value);
// Always updates the value and marks it as updated.
void push(T value);
// Has this field been updated since the last call to pullUpdated?
bool pullUpdated();
// Update the value in place. The mutator will be called as bool
// mutator(T&), return true to signal that the value was updated.
template <typename Mutator>
void update(Mutator&& mutator);
void initNetVersion(NetElementVersion const* version = nullptr) override;
// Values are never interpolated, but they will be delayed for the given
// interpolationTime.
void enableNetInterpolation(float extrapolationHint = 0.0f) override;
void disableNetInterpolation() override;
void tickNetInterpolation(float dt) override;
void netStore(DataStream& ds, NetCompatibilityRules rules = {}) const override;
void netLoad(DataStream& ds, NetCompatibilityRules rules) override;
bool writeNetDelta(DataStream& ds, uint64_t fromVersion, NetCompatibilityRules rules = {}) const override;
void readNetDelta(DataStream& ds, float interpolationTime = 0.0f, NetCompatibilityRules rules = {}) override;
protected:
virtual void readData(DataStream& ds, T& t) const = 0;
virtual void writeData(DataStream& ds, T const& t) const = 0;
virtual void updated();
private:
NetElementVersion const* m_netVersion = nullptr;
uint64_t m_latestUpdateVersion = 0;
T m_value = T();
bool m_updated = false;
Maybe<Deque<pair<float, T>>> m_pendingInterpolatedValues;
};
template <typename T>
class NetElementIntegral : public NetElementBasicField<T> {
protected:
void readData(DataStream& ds, T& v) const override;
void writeData(DataStream& ds, T const& v) const override;
};
typedef NetElementIntegral<int64_t> NetElementInt;
typedef NetElementIntegral<uint64_t> NetElementUInt;
// Properly encodes NPos no matter the platform width of size_t NetElement
// size_t values are NOT clamped when setting.
class NetElementSize : public NetElementBasicField<size_t> {
protected:
void readData(DataStream& ds, size_t& v) const override;
void writeData(DataStream& ds, size_t const& v) const override;
};
class NetElementBool : public NetElementBasicField<bool> {
protected:
void readData(DataStream& ds, bool& v) const override;
void writeData(DataStream& ds, bool const& v) const override;
};
template <typename Enum>
class NetElementEnum : public NetElementBasicField<Enum> {
protected:
void readData(DataStream& ds, Enum& v) const override;
void writeData(DataStream& ds, Enum const& v) const override;
};
// Wraps a uint64_t to give a simple event stream. Every trigger is an
// increment to a held uint64_t value, and slaves can see how many triggers
// have occurred since the last check.
class NetElementEvent : public NetElementUInt {
public:
void trigger();
// Returns the number of times this event has been triggered since the last
// pullOccurrences call.
uint64_t pullOccurrences();
// Pulls whether this event occurred at all, ignoring the number
bool pullOccurred();
// Ignore all the existing ocurrences
void ignoreOccurrences();
void setIgnoreOccurrencesOnNetLoad(bool ignoreOccurrencesOnNetLoad);
void netLoad(DataStream& ds, NetCompatibilityRules rules) override;
protected:
void updated() override;
private:
using NetElementUInt::get;
using NetElementUInt::set;
using NetElementUInt::push;
using NetElementUInt::update;
uint64_t m_pulledOccurrences = 0;
bool m_ignoreOccurrencesOnNetLoad = false;
};
// Holds an arbitrary serializable value
template <typename T>
class NetElementData : public NetElementBasicField<T> {
public:
NetElementData();
NetElementData(function<void(DataStream&, T&)> reader, function<void(DataStream&, T const&)> writer);
protected:
void readData(DataStream& ds, T& v) const override;
void writeData(DataStream& ds, T const& v) const override;
private:
function<void(DataStream&, T&)> m_reader;
function<void(DataStream&, T const&)> m_writer;
};
typedef NetElementData<String> NetElementString;
typedef NetElementData<ByteArray> NetElementBytes;
template <typename T>
T const& NetElementBasicField<T>::get() const {
return m_value;
}
template <typename T>
void NetElementBasicField<T>::set(T const& value) {
if (!(m_value == value))
push(value);
}
template <typename T>
void NetElementBasicField<T>::push(T value) {
m_value = std::move(value);
updated();
m_latestUpdateVersion = m_netVersion ? m_netVersion->current() : 0;
if (m_pendingInterpolatedValues)
m_pendingInterpolatedValues->clear();
}
template <typename T>
bool NetElementBasicField<T>::pullUpdated() {
return take(m_updated);
}
template <typename T>
template <typename Mutator>
void NetElementBasicField<T>::update(Mutator&& mutator) {
if (mutator(m_value)) {
updated();
m_latestUpdateVersion = m_netVersion ? m_netVersion->current() : 0;
if (m_pendingInterpolatedValues)
m_pendingInterpolatedValues->clear();
}
}
template <typename T>
void NetElementBasicField<T>::initNetVersion(NetElementVersion const* version) {
m_netVersion = version;
m_latestUpdateVersion = 0;
}
template <typename T>
void NetElementBasicField<T>::enableNetInterpolation(float) {
if (!m_pendingInterpolatedValues)
m_pendingInterpolatedValues.emplace();
}
template <typename T>
void NetElementBasicField<T>::disableNetInterpolation() {
if (m_pendingInterpolatedValues) {
if (!m_pendingInterpolatedValues->empty())
m_value = m_pendingInterpolatedValues->takeLast().second;
m_pendingInterpolatedValues.reset();
}
}
template <typename T>
void NetElementBasicField<T>::tickNetInterpolation(float dt) {
if (m_pendingInterpolatedValues) {
for (auto& p : *m_pendingInterpolatedValues)
p.first -= dt;
while (!m_pendingInterpolatedValues->empty() && m_pendingInterpolatedValues->first().first <= 0.0f) {
m_value = m_pendingInterpolatedValues->takeFirst().second;
updated();
}
}
}
template <typename T>
void NetElementBasicField<T>::netStore(DataStream& ds, NetCompatibilityRules rules) const {
if (!checkWithRules(rules)) return;
if (m_pendingInterpolatedValues && !m_pendingInterpolatedValues->empty())
writeData(ds, m_pendingInterpolatedValues->last().second);
else
writeData(ds, m_value);
}
template <typename T>
void NetElementBasicField<T>::netLoad(DataStream& ds, NetCompatibilityRules rules) {
if (!checkWithRules(rules)) return;
readData(ds, m_value);
m_latestUpdateVersion = m_netVersion ? m_netVersion->current() : 0;
updated();
if (m_pendingInterpolatedValues)
m_pendingInterpolatedValues->clear();
}
template <typename T>
bool NetElementBasicField<T>::writeNetDelta(DataStream& ds, uint64_t fromVersion, NetCompatibilityRules rules) const {
if (!checkWithRules(rules)) return false;
if (m_latestUpdateVersion < fromVersion)
return false;
if (m_pendingInterpolatedValues && !m_pendingInterpolatedValues->empty())
writeData(ds, m_pendingInterpolatedValues->last().second);
else
writeData(ds, m_value);
return true;
}
template <typename T>
void NetElementBasicField<T>::readNetDelta(DataStream& ds, float interpolationTime, NetCompatibilityRules rules) {
if (!checkWithRules(rules)) return;
T t;
readData(ds, t);
m_latestUpdateVersion = m_netVersion ? m_netVersion->current() : 0;
if (m_pendingInterpolatedValues) {
// Only append an incoming delta to our pending value list if the incoming
// step is forward in time of every other pending value. In any other
// case, this is an error or the step tracking is wildly off, so just clear
// any other incoming values.
if (interpolationTime > 0.0f && (m_pendingInterpolatedValues->empty() || interpolationTime >= m_pendingInterpolatedValues->last().first)) {
m_pendingInterpolatedValues->append({interpolationTime, std::move(t)});
} else {
m_value = std::move(t);
m_pendingInterpolatedValues->clear();
updated();
}
} else {
m_value = std::move(t);
updated();
}
}
template <typename T>
void NetElementBasicField<T>::updated() {
m_updated = true;
}
template <typename T>
void NetElementIntegral<T>::readData(DataStream& ds, T& v) const {
if (sizeof(T) == 1) {
ds.read(v);
} else {
if (std::is_unsigned<T>::value)
v = ds.readVlqU();
else
v = ds.readVlqI();
}
}
template <typename T>
void NetElementIntegral<T>::writeData(DataStream& ds, T const& v) const {
if (sizeof(T) == 1) {
ds.write(v);
} else {
if (std::is_unsigned<T>::value)
ds.writeVlqU(v);
else
ds.writeVlqI(v);
}
}
template <typename Enum>
void NetElementEnum<Enum>::readData(DataStream& ds, Enum& v) const {
if (sizeof(Enum) == 1)
ds.read(v);
else
v = (Enum)ds.readVlqI();
}
template <typename Enum>
void NetElementEnum<Enum>::writeData(DataStream& ds, Enum const& v) const {
if (sizeof(Enum) == 1)
ds.write(v);
else
ds.writeVlqI((int64_t)v);
}
template <typename T>
NetElementData<T>::NetElementData()
: NetElementData([](DataStream& ds, T & t) { ds >> t; }, [](DataStream& ds, T const& t) { ds << t; }) {}
template <typename T>
NetElementData<T>::NetElementData(function<void(DataStream&, T&)> reader, function<void(DataStream&, T const&)> writer)
: m_reader(std::move(reader)), m_writer(std::move(writer)) {}
template <typename T>
void NetElementData<T>::readData(DataStream& ds, T& v) const {
m_reader(ds, v);
}
template <typename T>
void NetElementData<T>::writeData(DataStream& ds, T const& v) const {
m_writer(ds, v);
}
}
|