1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
|
#pragma once
#include "StarAlgorithm.hpp"
namespace Star {
// A vector that is stack allocated up to a maximum size, becoming heap
// allocated when it grows beyond that size. Always takes up stack space of
// MaxStackSize * sizeof(Element).
template <typename Element, size_t MaxStackSize>
class SmallVector {
public:
typedef Element* iterator;
typedef Element const* const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef Element value_type;
typedef Element& reference;
typedef Element const& const_reference;
SmallVector();
SmallVector(SmallVector const& other);
SmallVector(SmallVector&& other);
template <typename OtherElement, size_t OtherMaxStackSize>
SmallVector(SmallVector<OtherElement, OtherMaxStackSize> const& other);
template <class Iterator>
SmallVector(Iterator first, Iterator last);
SmallVector(size_t size, Element const& value = Element());
SmallVector(initializer_list<Element> list);
~SmallVector();
SmallVector& operator=(SmallVector const& other);
SmallVector& operator=(SmallVector&& other);
SmallVector& operator=(std::initializer_list<Element> list);
size_t size() const;
bool empty() const;
void resize(size_t size, Element const& e = Element());
void reserve(size_t capacity);
reference at(size_t i);
const_reference at(size_t i) const;
reference operator[](size_t i);
const_reference operator[](size_t i) const;
const_iterator begin() const;
const_iterator end() const;
iterator begin();
iterator end();
const_reverse_iterator rbegin() const;
const_reverse_iterator rend() const;
reverse_iterator rbegin();
reverse_iterator rend();
// Pointer to internal data, always valid even if empty.
Element const* ptr() const;
Element* ptr();
void push_back(Element e);
void pop_back();
iterator insert(iterator pos, Element e);
template <typename Iterator>
iterator insert(iterator pos, Iterator begin, Iterator end);
iterator insert(iterator pos, initializer_list<Element> list);
template <typename... Args>
void emplace(iterator pos, Args&&... args);
template <typename... Args>
void emplace_back(Args&&... args);
void clear();
iterator erase(iterator pos);
iterator erase(iterator begin, iterator end);
bool operator==(SmallVector const& other) const;
bool operator!=(SmallVector const& other) const;
bool operator<(SmallVector const& other) const;
private:
typename std::aligned_storage<MaxStackSize * sizeof(Element), alignof(Element)>::type m_stackElements;
bool isHeapAllocated() const;
Element* m_begin;
Element* m_end;
Element* m_capacity;
};
template <typename Element, size_t MaxStackSize>
SmallVector<Element, MaxStackSize>::SmallVector() {
m_begin = (Element*)&m_stackElements;
m_end = m_begin;
m_capacity = m_begin + MaxStackSize;
}
template <typename Element, size_t MaxStackSize>
SmallVector<Element, MaxStackSize>::~SmallVector() {
clear();
if (isHeapAllocated()) {
free(m_begin, (m_capacity - m_begin) * sizeof(Element));
}
}
template <typename Element, size_t MaxStackSize>
SmallVector<Element, MaxStackSize>::SmallVector(SmallVector const& other)
: SmallVector() {
insert(begin(), other.begin(), other.end());
}
template <typename Element, size_t MaxStackSize>
SmallVector<Element, MaxStackSize>::SmallVector(SmallVector&& other)
: SmallVector() {
for (auto& e : other)
emplace_back(std::move(e));
}
template <typename Element, size_t MaxStackSize>
template <typename OtherElement, size_t OtherMaxStackSize>
SmallVector<Element, MaxStackSize>::SmallVector(SmallVector<OtherElement, OtherMaxStackSize> const& other)
: SmallVector() {
for (auto const& e : other)
emplace_back(e);
}
template <typename Element, size_t MaxStackSize>
template <class Iterator>
SmallVector<Element, MaxStackSize>::SmallVector(Iterator first, Iterator last)
: SmallVector() {
insert(begin(), first, last);
}
template <typename Element, size_t MaxStackSize>
SmallVector<Element, MaxStackSize>::SmallVector(size_t size, Element const& value)
: SmallVector() {
resize(size, value);
}
template <typename Element, size_t MaxStackSize>
SmallVector<Element, MaxStackSize>::SmallVector(initializer_list<Element> list)
: SmallVector() {
for (auto const& e : list)
emplace_back(e);
}
template <typename Element, size_t MaxStackSize>
auto SmallVector<Element, MaxStackSize>::operator=(SmallVector const& other) -> SmallVector& {
if (this == &other)
return *this;
resize(other.size());
for (size_t i = 0; i < size(); ++i)
operator[](i) = other[i];
return *this;
}
template <typename Element, size_t MaxStackSize>
auto SmallVector<Element, MaxStackSize>::operator=(SmallVector&& other) -> SmallVector& {
resize(other.size());
for (size_t i = 0; i < size(); ++i)
operator[](i) = std::move(other[i]);
return *this;
}
template <typename Element, size_t MaxStackSize>
auto SmallVector<Element, MaxStackSize>::operator=(std::initializer_list<Element> list) -> SmallVector& {
resize(list.size());
for (size_t i = 0; i < size(); ++i)
operator[](i) = std::move(list[i]);
return *this;
}
template <typename Element, size_t MaxStackSize>
size_t SmallVector<Element, MaxStackSize>::size() const {
return m_end - m_begin;
}
template <typename Element, size_t MaxStackSize>
bool SmallVector<Element, MaxStackSize>::empty() const {
return m_begin == m_end;
}
template <typename Element, size_t MaxStackSize>
void SmallVector<Element, MaxStackSize>::resize(size_t size, Element const& e) {
reserve(size);
for (size_t i = this->size(); i > size; --i)
pop_back();
for (size_t i = this->size(); i < size; ++i)
emplace_back(e);
}
template <typename Element, size_t MaxStackSize>
void SmallVector<Element, MaxStackSize>::reserve(size_t newCapacity) {
size_t oldCapacity = m_capacity - m_begin;
if (newCapacity > oldCapacity) {
newCapacity = max(oldCapacity * 2, newCapacity);
auto newMem = (Element*)Star::malloc(newCapacity * sizeof(Element));
if (!newMem)
throw MemoryException::format("Could not set new SmallVector capacity {}\n", newCapacity);
size_t size = m_end - m_begin;
auto oldMem = m_begin;
auto oldHeapAllocated = isHeapAllocated();
// We assume that move constructors can never throw.
for (size_t i = 0; i < size; ++i) {
new (&newMem[i]) Element(std::move(oldMem[i]));
}
m_begin = newMem;
m_end = m_begin + size;
m_capacity = m_begin + newCapacity;
auto freeOldMem = finally([=]() {
if (oldHeapAllocated)
Star::free(oldMem, oldCapacity * sizeof(Element));
});
for (size_t i = 0; i < size; ++i) {
oldMem[i].~Element();
}
}
}
template <typename Element, size_t MaxStackSize>
auto SmallVector<Element, MaxStackSize>::at(size_t i) -> reference {
if (i >= size())
throw OutOfRangeException::format("out of range in SmallVector::at({})", i);
return m_begin[i];
}
template <typename Element, size_t MaxStackSize>
auto SmallVector<Element, MaxStackSize>::at(size_t i) const -> const_reference {
if (i >= size())
throw OutOfRangeException::format("out of range in SmallVector::at({})", i);
return m_begin[i];
}
template <typename Element, size_t MaxStackSize>
auto SmallVector<Element, MaxStackSize>::operator[](size_t i) -> reference {
starAssert(i < size());
return m_begin[i];
}
template <typename Element, size_t MaxStackSize>
auto SmallVector<Element, MaxStackSize>::operator[](size_t i) const -> const_reference {
starAssert(i < size());
return m_begin[i];
}
template <typename Element, size_t MaxStackSize>
auto SmallVector<Element, MaxStackSize>::begin() const -> const_iterator {
return m_begin;
}
template <typename Element, size_t MaxStackSize>
auto SmallVector<Element, MaxStackSize>::end() const -> const_iterator {
return m_end;
}
template <typename Element, size_t MaxStackSize>
auto SmallVector<Element, MaxStackSize>::begin() -> iterator {
return m_begin;
}
template <typename Element, size_t MaxStackSize>
auto SmallVector<Element, MaxStackSize>::end() -> iterator {
return m_end;
}
template <typename Element, size_t MaxStackSize>
auto SmallVector<Element, MaxStackSize>::rbegin() const -> const_reverse_iterator {
return const_reverse_iterator(end());
}
template <typename Element, size_t MaxStackSize>
auto SmallVector<Element, MaxStackSize>::rend() const -> const_reverse_iterator {
return const_reverse_iterator(begin());
}
template <typename Element, size_t MaxStackSize>
auto SmallVector<Element, MaxStackSize>::rbegin() -> reverse_iterator {
return reverse_iterator(end());
}
template <typename Element, size_t MaxStackSize>
auto SmallVector<Element, MaxStackSize>::rend() -> reverse_iterator {
return reverse_iterator(begin());
}
template <typename Element, size_t MaxStackSize>
Element const* SmallVector<Element, MaxStackSize>::ptr() const {
return m_begin;
}
template <typename Element, size_t MaxStackSize>
Element* SmallVector<Element, MaxStackSize>::ptr() {
return m_begin;
}
template <typename Element, size_t MaxStackSize>
void SmallVector<Element, MaxStackSize>::push_back(Element e) {
emplace_back(std::move(e));
}
template <typename Element, size_t MaxStackSize>
void SmallVector<Element, MaxStackSize>::pop_back() {
if (m_begin == m_end)
throw OutOfRangeException("SmallVector::pop_back called on empty SmallVector");
--m_end;
m_end->~Element();
}
template <typename Element, size_t MaxStackSize>
auto SmallVector<Element, MaxStackSize>::insert(iterator pos, Element e) -> iterator {
emplace(pos, std::move(e));
return pos;
}
template <typename Element, size_t MaxStackSize>
template <typename Iterator>
auto SmallVector<Element, MaxStackSize>::insert(iterator pos, Iterator begin, Iterator end) -> iterator {
size_t toAdd = std::distance(begin, end);
size_t startIndex = pos - m_begin;
size_t endIndex = startIndex + toAdd;
size_t toShift = size() - startIndex;
resize(size() + toAdd);
for (size_t i = toShift; i != 0; --i)
operator[](endIndex + i - 1) = std::move(operator[](startIndex + i - 1));
for (size_t i = 0; i != toAdd; ++i)
operator[](startIndex + i) = *begin++;
return pos;
}
template <typename Element, size_t MaxStackSize>
auto SmallVector<Element, MaxStackSize>::insert(iterator pos, initializer_list<Element> list) -> iterator {
return insert(pos, list.begin(), list.end());
}
template <typename Element, size_t MaxStackSize>
template <typename... Args>
void SmallVector<Element, MaxStackSize>::emplace(iterator pos, Args&&... args) {
size_t index = pos - m_begin;
emplace_back(Element());
for (size_t i = size() - 1; i != index; --i)
operator[](i) = std::move(operator[](i - 1));
operator[](index) = Element(std::forward<Args>(args)...);
}
template <typename Element, size_t MaxStackSize>
template <typename... Args>
void SmallVector<Element, MaxStackSize>::emplace_back(Args&&... args) {
if (m_end == m_capacity)
reserve(size() + 1);
new (m_end) Element(std::forward<Args>(args)...);
++m_end;
}
template <typename Element, size_t MaxStackSize>
void SmallVector<Element, MaxStackSize>::clear() {
while (m_begin != m_end)
pop_back();
}
template <typename Element, size_t MaxStackSize>
auto SmallVector<Element, MaxStackSize>::erase(iterator pos) -> iterator {
size_t index = pos - ptr();
for (size_t i = index; i < size() - 1; ++i)
operator[](i) = std::move(operator[](i + 1));
pop_back();
return pos;
}
template <typename Element, size_t MaxStackSize>
auto SmallVector<Element, MaxStackSize>::erase(iterator begin, iterator end) -> iterator {
size_t startIndex = begin - ptr();
size_t endIndex = end - ptr();
size_t toRemove = endIndex - startIndex;
for (size_t i = endIndex; i < size(); ++i)
operator[](startIndex + (i - endIndex)) = std::move(operator[](i));
resize(size() - toRemove);
return begin;
}
template <typename Element, size_t MaxStackSize>
bool SmallVector<Element, MaxStackSize>::operator==(SmallVector const& other) const {
if (this == &other)
return true;
if (size() != other.size())
return false;
for (size_t i = 0; i < size(); ++i) {
if (operator[](i) != other[i])
return false;
}
return true;
}
template <typename Element, size_t MaxStackSize>
bool SmallVector<Element, MaxStackSize>::operator!=(SmallVector const& other) const {
return !operator==(other);
}
template <typename Element, size_t MaxStackSize>
bool SmallVector<Element, MaxStackSize>::operator<(SmallVector const& other) const {
for (size_t i = 0; i < size(); ++i) {
if (i >= other.size())
return false;
Element const& a = operator[](i);
Element const& b = other[i];
if (a < b)
return true;
else if (b < a)
return false;
}
return size() < other.size();
}
template <typename Element, size_t MaxStackSize>
bool SmallVector<Element, MaxStackSize>::isHeapAllocated() const {
return m_begin != (Element*)&m_stackElements;
}
}
|