1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
|
#include "StarSha256.hpp"
#include "StarFormat.hpp"
#include "StarEncode.hpp"
namespace Star {
// An implementation of the SHA-256 hash function, this is endian neutral
// so should work just about anywhere.
//
// This code works much like the MD5 code provided by RSA. You sha_init()
// a "sha_state" then sha_process() the bytes you want and sha_done() to get
// the output.
//
// Revised Code: Complies to SHA-256 standard now.
//
// Tom St Denis
// the K array
static const uint32_t K[64] = {0x428a2f98U,
0x71374491U,
0xb5c0fbcfU,
0xe9b5dba5U,
0x3956c25bU,
0x59f111f1U,
0x923f82a4U,
0xab1c5ed5U,
0xd807aa98U,
0x12835b01U,
0x243185beU,
0x550c7dc3U,
0x72be5d74U,
0x80deb1feU,
0x9bdc06a7U,
0xc19bf174U,
0xe49b69c1U,
0xefbe4786U,
0x0fc19dc6U,
0x240ca1ccU,
0x2de92c6fU,
0x4a7484aaU,
0x5cb0a9dcU,
0x76f988daU,
0x983e5152U,
0xa831c66dU,
0xb00327c8U,
0xbf597fc7U,
0xc6e00bf3U,
0xd5a79147U,
0x06ca6351U,
0x14292967U,
0x27b70a85U,
0x2e1b2138U,
0x4d2c6dfcU,
0x53380d13U,
0x650a7354U,
0x766a0abbU,
0x81c2c92eU,
0x92722c85U,
0xa2bfe8a1U,
0xa81a664bU,
0xc24b8b70U,
0xc76c51a3U,
0xd192e819U,
0xd6990624U,
0xf40e3585U,
0x106aa070U,
0x19a4c116U,
0x1e376c08U,
0x2748774cU,
0x34b0bcb5U,
0x391c0cb3U,
0x4ed8aa4aU,
0x5b9cca4fU,
0x682e6ff3U,
0x748f82eeU,
0x78a5636fU,
0x84c87814U,
0x8cc70208U,
0x90befffaU,
0xa4506cebU,
0xbef9a3f7U,
0xc67178f2UL};
// Various logical functions
#define Ch(x, y, z) ((x & y) ^ (~x & z))
#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
#define S(x, n) (((x) >> ((n)&31)) | ((x) << (32 - ((n)&31))))
#define R(x, n) ((x) >> (n))
#define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
#define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25))
#define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3))
#define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10))
// compress 512-bits
static void sha_compress(sha_state* md) {
uint32_t S[8], W[64], t0, t1;
int i;
/* copy state into S */
for (i = 0; i < 8; i++)
S[i] = md->state[i];
/* copy the state into 512-bits into W[0..15] */
for (i = 0; i < 16; i++)
W[i] = (((uint32_t)md->buf[(4 * i) + 0]) << 24) | (((uint32_t)md->buf[(4 * i) + 1]) << 16)
| (((uint32_t)md->buf[(4 * i) + 2]) << 8) | (((uint32_t)md->buf[(4 * i) + 3]));
/* fill W[16..63] */
for (i = 16; i < 64; i++)
W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
/* Compress */
for (i = 0; i < 64; i++) {
t0 = S[7] + Sigma1(S[4]) + Ch(S[4], S[5], S[6]) + K[i] + W[i];
t1 = Sigma0(S[0]) + Maj(S[0], S[1], S[2]);
S[7] = S[6];
S[6] = S[5];
S[5] = S[4];
S[4] = S[3] + t0;
S[3] = S[2];
S[2] = S[1];
S[1] = S[0];
S[0] = t0 + t1;
}
/* feedback */
for (i = 0; i < 8; i++)
md->state[i] += S[i];
}
// init the SHA state
static void sha_init(sha_state* md) {
md->curlen = md->length = 0;
md->state[0] = 0x6A09E667U;
md->state[1] = 0xBB67AE85U;
md->state[2] = 0x3C6EF372U;
md->state[3] = 0xA54FF53AU;
md->state[4] = 0x510E527FU;
md->state[5] = 0x9B05688CU;
md->state[6] = 0x1F83D9ABU;
md->state[7] = 0x5BE0CD19U;
}
static void sha_process(sha_state* md, uint8_t* buf, int len) {
while (len--) {
/* copy byte */
md->buf[md->curlen++] = *buf++;
/* is 64 bytes full? */
if (md->curlen == 64) {
sha_compress(md);
md->length += 512;
md->curlen = 0;
}
}
}
static void sha_done(sha_state* md, uint8_t* hash) {
int i;
/* increase the length of the message */
md->length += md->curlen * 8;
/* append the '1' bit */
md->buf[md->curlen++] = 0x80;
/* if the length is currently above 56 bytes we append zeros then compress.
Then we can fall back to padding zeros and length encoding like normal. */
if (md->curlen > 56) {
for (; md->curlen < 64;)
md->buf[md->curlen++] = 0;
sha_compress(md);
md->curlen = 0;
}
/* pad upto 56 bytes of zeroes */
for (; md->curlen < 56;)
md->buf[md->curlen++] = 0;
/* since all messages are under 2^32 bits we mark the top bits zero */
for (i = 56; i < 60; i++)
md->buf[i] = 0;
/* append length */
for (i = 60; i < 64; i++)
md->buf[i] = (md->length >> ((63 - i) * 8)) & 255;
sha_compress(md);
/* copy output */
for (i = 0; i < 32; i++)
hash[i] = (md->state[i >> 2] >> (((3 - i) & 3) << 3)) & 255;
}
Sha256Hasher::Sha256Hasher() {
m_finished = false;
sha_init(&m_state);
}
void Sha256Hasher::push(char const* data, size_t length) {
if (m_finished) {
sha_init(&m_state);
m_finished = false;
}
sha_process(&m_state, (uint8_t*)data, length);
}
void Sha256Hasher::push(String const& data) {
push(data.utf8Ptr(), data.utf8Size());
}
void Sha256Hasher::push(ByteArray const& data) {
push(data.ptr(), data.size());
}
ByteArray Sha256Hasher::compute() {
ByteArray dest(32, 0);
sha_done(&m_state, (uint8_t*)dest.ptr());
m_finished = true;
return dest;
}
void Sha256Hasher::compute(char* hashDestination) {
sha_done(&m_state, (uint8_t*)hashDestination);
m_finished = true;
}
void sha256(char const* source, size_t length, char* hashDestination) {
sha_state state;
sha_init(&state);
sha_process(&state, (uint8_t*)source, length);
sha_done(&state, (uint8_t*)hashDestination);
}
ByteArray sha256(char const* source, size_t length) {
ByteArray dest(32, 0);
sha256(source, length, dest.ptr());
return dest;
}
void sha256(ByteArray const& in, ByteArray& out) {
out.resize(32, 0);
sha256(in.ptr(), in.size(), out.ptr());
}
void sha256(String const& in, ByteArray& out) {
out.resize(32, 0);
sha256(in.utf8Ptr(), in.utf8Size(), out.ptr());
}
ByteArray sha256(ByteArray const& in) {
return sha256(in.ptr(), in.size());
}
ByteArray sha256(String const& in) {
return sha256(in.utf8Ptr(), in.utf8Size());
}
}
|