Веб-сайт самохостера Lotigara

summaryrefslogtreecommitdiff
path: root/source/base/StarMixer.cpp
blob: bbcb23af34ca40c704f5b453540b41175c9de18d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
#include "StarMixer.hpp"
#include "StarIterator.hpp"
#include "StarInterpolation.hpp"
#include "StarTime.hpp"
#include "StarLogging.hpp"

namespace Star {

namespace {
  float rateOfChangeFromRampTime(float rampTime) {
    static const float MaxRate = 10000.0f;

    if (rampTime < 1.0f / MaxRate)
      return MaxRate;
    else
      return 1.0f / rampTime;
  }
}

AudioInstance::AudioInstance(Audio const& audio)
  : m_audio(audio) {
  m_mixerGroup = MixerGroup::Effects;

  m_volume = {1.0f, 1.0f, 0};

  m_pitchMultiplier = 1.0f;
  m_pitchMultiplierTarget = 1.0f;
  m_pitchMultiplierVelocity = 0;

  m_loops = 0;
  m_stopping = false;
  m_finished = false;

  m_rangeMultiplier = 1.0f;

  m_clockStopFadeOut = 0.0f;
}

Maybe<Vec2F> AudioInstance::position() const {
  MutexLocker locker(m_mutex);
  return m_position;
}

void AudioInstance::setPosition(Maybe<Vec2F> position) {
  MutexLocker locker(m_mutex);
  m_position = position;
}

void AudioInstance::translate(Vec2F const& distance) {
  MutexLocker locker(m_mutex);
  if (m_position)
    *m_position += distance;
  else
    m_position = distance;
}

float AudioInstance::rangeMultiplier() const {
  MutexLocker locker(m_mutex);
  return m_rangeMultiplier;
}

void AudioInstance::setRangeMultiplier(float rangeMultiplier) {
  MutexLocker locker(m_mutex);
  m_rangeMultiplier = rangeMultiplier;
}

void AudioInstance::setVolume(float targetValue, float rampTime) {
  starAssert(targetValue >= 0);
  MutexLocker locker(m_mutex);

  if (m_stopping)
    return;

  if (rampTime <= 0.0f) {
    m_volume.value = targetValue;
    m_volume.target = targetValue;
    m_volume.velocity = 0.0f;
  } else {
    m_volume.target = targetValue;
    m_volume.velocity = rateOfChangeFromRampTime(rampTime);
  }
}

void AudioInstance::setPitchMultiplier(float targetValue, float rampTime) {
  starAssert(targetValue >= 0);
  MutexLocker locker(m_mutex);

  if (m_stopping)
    return;

  if (rampTime <= 0.0f) {
    m_pitchMultiplier = targetValue;
    m_pitchMultiplierTarget = targetValue;
    m_pitchMultiplierVelocity = 0.0f;
  } else {
    m_pitchMultiplierTarget = targetValue;
    m_pitchMultiplierVelocity = rateOfChangeFromRampTime(rampTime);
  }
}

int AudioInstance::loops() const {
  MutexLocker locker(m_mutex);
  return m_loops;
}

void AudioInstance::setLoops(int loops) {
  MutexLocker locker(m_mutex);
  m_loops = loops;
}

double AudioInstance::currentTime() const {
  return m_audio.currentTime();
}

double AudioInstance::totalTime() const {
  return m_audio.totalTime();
}

void AudioInstance::seekTime(double time) {
  m_audio.seekTime(time);
}

MixerGroup AudioInstance::mixerGroup() const {
  MutexLocker locker(m_mutex);
  return m_mixerGroup;
}

void AudioInstance::setMixerGroup(MixerGroup mixerGroup) {
  MutexLocker locker(m_mutex);
  m_mixerGroup = mixerGroup;
}

void AudioInstance::setClockStart(Maybe<int64_t> clockStartTime) {
  MutexLocker locker(m_mutex);
  m_clockStart = clockStartTime;
}

void AudioInstance::setClockStop(Maybe<int64_t> clockStopTime, int64_t fadeOutTime) {
  MutexLocker locker(m_mutex);
  m_clockStop = clockStopTime;
  m_clockStopFadeOut = fadeOutTime;
}

void AudioInstance::stop(float rampTime) {
  MutexLocker locker(m_mutex);

  if (rampTime <= 0.0f) {
    m_volume.value = 0.0f;
    m_volume.target = 0.0f;
    m_volume.velocity = 0.0f;

    m_pitchMultiplierTarget = 0.0f;
    m_pitchMultiplierVelocity = 0.0f;
  } else {
    m_volume.target = 0.0f;
    m_volume.velocity = rateOfChangeFromRampTime(rampTime);
  }

  m_stopping = true;
}

bool AudioInstance::finished() const {
  return m_finished;
}

Mixer::Mixer(unsigned sampleRate, unsigned channels) {
  m_sampleRate = sampleRate;
  m_channels = channels;

  m_volume = {1.0f, 1.0f, 0};

  m_groupVolumes[MixerGroup::Effects] = {1.0f, 1.0f, 0};
  m_groupVolumes[MixerGroup::Music] = {1.0f, 1.0f, 0};
  m_groupVolumes[MixerGroup::Cinematic] = {1.0f, 1.0f, 0};
  m_groupVolumes[MixerGroup::Instruments] = {1.0f, 1.0f, 0};

  m_speed = 1.0f;
}

unsigned Mixer::sampleRate() const {
  return m_sampleRate;
}

unsigned Mixer::channels() const {
  return m_channels;
}

void Mixer::addEffect(String const& effectName, EffectFunction effectFunction, float rampTime) {
  MutexLocker locker(m_effectsMutex);
  m_effects[effectName] = make_shared<EffectInfo>(EffectInfo{effectFunction, 0.0f, rateOfChangeFromRampTime(rampTime), false});
}

void Mixer::removeEffect(String const& effectName, float rampTime) {
  MutexLocker locker(m_effectsMutex);
  if (m_effects.contains(effectName))
    m_effects[effectName]->velocity = -rateOfChangeFromRampTime(rampTime);
}

StringList Mixer::currentEffects() {
  MutexLocker locker(m_effectsMutex);
  return m_effects.keys();
}

bool Mixer::hasEffect(String const& effectName) {
  MutexLocker locker(m_effectsMutex);
  return m_effects.contains(effectName);
}

void Mixer::setSpeed(float speed) {
  m_speed = speed;
}

void Mixer::setVolume(float volume, float rampTime) {
  MutexLocker locker(m_mutex);
  m_volume.target = volume;
  m_volume.velocity = rateOfChangeFromRampTime(rampTime);
}

void Mixer::play(AudioInstancePtr sample) {
  MutexLocker locker(m_queueMutex);
  m_audios.add(std::move(sample), AudioState{List<float>(m_channels, 1.0f)});
}

void Mixer::stopAll(float rampTime) {
  MutexLocker locker(m_queueMutex);
  float vel = rateOfChangeFromRampTime(rampTime);
  for (auto const& p : m_audios)
    p.first->stop(vel);
}

void Mixer::read(int16_t* outBuffer, size_t frameCount, ExtraMixFunction extraMixFunction) {
  // Make this method as least locky as possible by copying all the needed
  // member data before the expensive audio / effect stuff.
  float speed;
  unsigned sampleRate;
  unsigned channels;
  float volume;
  float volumeVelocity;
  float targetVolume;
  Map<MixerGroup, RampedValue> groupVolumes;

  {
    MutexLocker locker(m_mutex);
    speed = m_speed;
    sampleRate = m_sampleRate;
    channels = m_channels;
    volume = m_volume.value;
    volumeVelocity = m_volume.velocity;
    targetVolume = m_volume.target;
    groupVolumes = m_groupVolumes;
  }

  size_t bufferSize = frameCount * m_channels;
  m_mixBuffer.resize(bufferSize, 0);

  float time = (float)frameCount / sampleRate;
  float beginVolume = volume;
  float endVolume = approach(targetVolume, volume, volumeVelocity * time);

  Map<MixerGroup, float> groupEndVolumes;
  for (auto p : groupVolumes)
    groupEndVolumes[p.first] = approach(p.second.target, p.second.value, p.second.velocity * time);

  auto sampleStartTime = Time::millisecondsSinceEpoch();
  unsigned millisecondsInBuffer = (bufferSize * 1000) / (channels * sampleRate);
  auto sampleEndTime = sampleStartTime + millisecondsInBuffer;

  for (size_t i = 0; i < bufferSize; ++i)
    outBuffer[i] = 0;

  {
    MutexLocker locker(m_queueMutex);
    // Mix all active sounds
    for (auto& p : m_audios) {
      auto& audioInstance = p.first;
      auto& audioState = p.second;

      MutexLocker audioLocker(audioInstance->m_mutex);

      if (audioInstance->m_finished)
        continue;

      if (audioInstance->m_clockStart && *audioInstance->m_clockStart > sampleEndTime)
        continue;

      float groupVolume = groupVolumes[audioInstance->m_mixerGroup].value;
      float groupEndVolume = groupEndVolumes[audioInstance->m_mixerGroup];

      bool finished = false;

      float audioStopVolBegin = audioInstance->m_volume.value;
      float audioStopVolEnd = (audioInstance->m_volume.velocity > 0)
          ? approach(audioInstance->m_volume.target, audioStopVolBegin, audioInstance->m_volume.velocity * time)
          : audioInstance->m_volume.value;

      float pitchMultiplier = (audioInstance->m_pitchMultiplierVelocity > 0)
          ? approach(audioInstance->m_pitchMultiplierTarget, audioInstance->m_pitchMultiplier, audioInstance->m_pitchMultiplierVelocity * time)
          : audioInstance->m_pitchMultiplier;

      if (audioInstance->m_mixerGroup == MixerGroup::Effects || audioInstance->m_mixerGroup == MixerGroup::Instruments)
        pitchMultiplier *= speed;

      if (audioStopVolEnd == 0.0f && audioInstance->m_stopping)
        finished = true;

      size_t ramt = 0;
      if (audioInstance->m_clockStart && *audioInstance->m_clockStart > sampleStartTime) {
        int silentSamples = (*audioInstance->m_clockStart - sampleStartTime) * sampleRate / 1000;
        for (unsigned i = 0; i < silentSamples * channels; ++i)
          m_mixBuffer[i] = 0;
        ramt += silentSamples * channels;
      }
      try {
        ramt += audioInstance->m_audio.resample(channels, sampleRate, m_mixBuffer.ptr() + ramt, bufferSize - ramt, pitchMultiplier);
        while (ramt != bufferSize && !finished) {
          // Only seek back to the beginning and read more data if loops is < 0
          // (loop forever), or we have more loops to go, otherwise, the sample is
          // finished.
          if (audioInstance->m_loops != 0) {
            audioInstance->m_audio.seekSample(0);
            ramt += audioInstance->m_audio.resample(channels, sampleRate, m_mixBuffer.ptr() + ramt, bufferSize - ramt, pitchMultiplier);
            if (audioInstance->m_loops > 0)
              --audioInstance->m_loops;
          } else {
            finished = true;
          }
        }
        if (audioInstance->m_clockStop && *audioInstance->m_clockStop < sampleEndTime) {
          for (size_t s = 0; s < ramt / channels; ++s) {
            unsigned millisecondsInBuffer = (s * 1000) / sampleRate;
            auto sampleTime = sampleStartTime + millisecondsInBuffer;
            if (sampleTime > *audioInstance->m_clockStop) {
              float volume = 0.0f;
              if (audioInstance->m_clockStopFadeOut > 0)
                volume = 1.0f - (float)(sampleTime - *audioInstance->m_clockStop) / (float)audioInstance->m_clockStopFadeOut;

              if (volume <= 0) {
                for (size_t c = 0; c < channels; ++c)
                  m_mixBuffer[s * channels + c] = 0;
              } else {
                for (size_t c = 0; c < channels; ++c)
                  m_mixBuffer[s * channels + c] *= volume;
              }
            }
          }
          if (sampleEndTime > *audioInstance->m_clockStop + audioInstance->m_clockStopFadeOut)
            finished = true;
        }

        for (size_t s = 0; s < ramt / channels; ++s) {
          float vol = lerp((float)s / frameCount, beginVolume * groupVolume * audioStopVolBegin, endVolume * groupEndVolume * audioStopVolEnd);
          for (size_t c = 0; c < channels; ++c) {
            float sample = m_mixBuffer[s * channels + c] * vol * audioState.positionalChannelVolumes[c] * audioInstance->m_volume.value;
            int16_t& outSample = outBuffer[s * channels + c];
            outSample = clamp(sample + outSample, -32767.0f, 32767.0f);
          }
        }
      } catch (Star::AudioException const& e) {
        Logger::error("Error reading audio '{}': {}", audioInstance->m_audio.name(), e.what());
        finished = true;
      }

      audioInstance->m_volume.value = audioStopVolEnd;
      audioInstance->m_finished = finished;
    }
  }

  if (extraMixFunction)
    extraMixFunction(outBuffer, frameCount, channels);

  {
    MutexLocker locker(m_effectsMutex);
    // Apply all active effects
    for (auto const& pair : m_effects) {
      auto const& effectInfo = pair.second;
      if (effectInfo->finished)
        continue;

      float effectBegin = effectInfo->amount;
      float effectEnd;
      if (effectInfo->velocity < 0)
        effectEnd = approach(0.0f, effectBegin, -effectInfo->velocity * time);
      else
        effectEnd = approach(1.0f, effectBegin, effectInfo->velocity * time);

      std::copy(outBuffer, outBuffer + bufferSize, m_mixBuffer.begin());
      effectInfo->effectFunction(m_mixBuffer.ptr(), frameCount, channels);

      for (size_t s = 0; s < frameCount; ++s) {
        float amt = lerp((float)s / frameCount, effectBegin, effectEnd);
        for (size_t c = 0; c < channels; ++c) {
          int16_t prev = outBuffer[s * channels + c];
          outBuffer[s * channels + c] = lerp(amt, prev, m_mixBuffer[s * channels + c]);
        }
      }

      effectInfo->amount = effectEnd;
      effectInfo->finished = effectInfo->amount <= 0.0f;
    }
  }

  {
    MutexLocker locker(m_mutex);

    m_volume.value = endVolume;

    for (auto p : groupEndVolumes)
      m_groupVolumes[p.first].value = p.second;
  }
}

Mixer::EffectFunction Mixer::lowpass(size_t avgSize) const {
  struct LowPass {
    LowPass(size_t avgSize) : avgSize(avgSize) {}

    size_t avgSize;
    List<Deque<float>> filter;

    void operator()(int16_t* buffer, size_t frames, unsigned channels) {
      filter.resize(channels);
      for (size_t f = 0; f < frames; ++f) {
        for (size_t c = 0; c < channels; ++c) {
          auto& filterChannel = filter[c];
          filterChannel.append(buffer[f * channels + c] / 32767.0f);
          while (filterChannel.size() > avgSize)
            filterChannel.takeFirst();
          buffer[f * channels + c] = sum(filterChannel) / (float)avgSize * 32767.0f;
        }
      }
    }
  };

  return LowPass(avgSize);
}

Mixer::EffectFunction Mixer::echo(float time, float dry, float wet) const {
  struct Echo {
    unsigned echoLength;
    float dry;
    float wet;
    List<Deque<float>> filter;

    void operator()(int16_t* buffer, size_t frames, unsigned channels) {
      if (echoLength == 0)
        return;

      filter.resize(channels);
      for (size_t c = 0; c < channels; ++c) {
        auto& filterChannel = filter[c];
        if (filterChannel.empty())
          filterChannel.resize(echoLength, 0);
      }

      for (size_t f = 0; f < frames; ++f) {
        for (size_t c = 0; c < channels; ++c) {
          auto& filterChannel = filter[c];
          buffer[f * channels + c] = buffer[f * channels + c] * dry + filter[c][0] * wet;
          filterChannel.append(buffer[f * channels + c]);
          while (filterChannel.size() > echoLength)
            filterChannel.takeFirst();
        }
      }
    }
  };

  return Echo{(unsigned)(time * m_sampleRate), dry, wet, {}};
}

void Mixer::setGroupVolume(MixerGroup group, float targetValue, float rampTime) {
  MutexLocker locker(m_mutex);
  if (rampTime <= 0.0f) {
    m_groupVolumes[group].value = targetValue;
    m_groupVolumes[group].target = targetValue;
    m_groupVolumes[group].velocity = 0.0f;
  } else {
    m_groupVolumes[group].target = targetValue;
    m_groupVolumes[group].velocity = rateOfChangeFromRampTime(rampTime);
  }
}

void Mixer::update(float, PositionalAttenuationFunction positionalAttenuationFunction) {
  {
    MutexLocker locker(m_queueMutex);
    eraseWhere(m_audios, [&](auto& p) {
        if (p.first->m_finished)
          return true;

        if (positionalAttenuationFunction && p.first->m_position) {
          for (unsigned c = 0; c < m_channels; ++c)
            p.second.positionalChannelVolumes[c] = 1.0f - positionalAttenuationFunction(c, *p.first->m_position, p.first->m_rangeMultiplier);
        } else {
          for (unsigned c = 0; c < m_channels; ++c)
            p.second.positionalChannelVolumes[c] = 1.0f;
        }
        return false;
      });
  }

  {
    MutexLocker locker(m_effectsMutex);
    eraseWhere(m_effects, [](auto const& p) {
        return p.second->finished;
      });
  }
}

}