1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
#include "StarCellularLightArray.hpp"
// just specializing these in a cpp file so I can iterate on them without recompiling like 40 files!!
namespace Star {
template <>
void CellularLightArray<ScalarLightTraits>::calculatePointLighting(size_t xmin, size_t ymin, size_t xmax, size_t ymax) {
float perBlockObstacleAttenuation = 1.0f / m_pointMaxObstacle;
float perBlockAirAttenuation = 1.0f / m_pointMaxAir;
for (PointLight light : m_pointLights) {
if (light.position[0] < 0 || light.position[0] > m_width - 1 || light.position[1] < 0 || light.position[1] > m_height - 1)
continue;
float maxIntensity = ScalarLightTraits::maxIntensity(light.value);
Vec2F beamDirection = Vec2F(1, 0).rotate(light.beamAngle);
float maxRange = maxIntensity * m_pointMaxAir;
// The min / max considering the radius of the light
size_t lxmin = std::floor(std::max<float>(xmin, light.position[0] - maxRange));
size_t lymin = std::floor(std::max<float>(ymin, light.position[1] - maxRange));
size_t lxmax = std::ceil(std::min<float>(xmax, light.position[0] + maxRange));
size_t lymax = std::ceil(std::min<float>(ymax, light.position[1] + maxRange));
for (size_t x = lxmin; x < lxmax; ++x) {
for (size_t y = lymin; y < lymax; ++y) {
LightValue lvalue = getLight(x, y);
// + 0.5f to correct block position to center
Vec2F blockPos = Vec2F(x + 0.5f, y + 0.5f);
Vec2F relativeLightPosition = blockPos - light.position;
float distance = relativeLightPosition.magnitude();
if (distance == 0.0f) {
setLight(x, y, light.value + lvalue);
continue;
}
float attenuation = distance * perBlockAirAttenuation;
if (attenuation >= 1.0f)
continue;
Vec2F direction = relativeLightPosition / distance;
if (light.beam > 0.0f) {
attenuation += (1.0f - light.beamAmbience) * clamp(light.beam * (1.0f - direction * beamDirection), 0.0f, 1.0f);
if (attenuation >= 1.0f)
continue;
}
float remainingAttenuation = maxIntensity - attenuation;
if (remainingAttenuation <= 0.0f)
continue;
// Need to circularize manhattan attenuation here
float circularizedPerBlockObstacleAttenuation = perBlockObstacleAttenuation / max(fabs(direction[0]), fabs(direction[1]));
float blockAttenuation = lineAttenuation(blockPos, light.position, circularizedPerBlockObstacleAttenuation, remainingAttenuation);
// Apply single obstacle boost (determine single obstacle by one
// block unit of attenuation).
attenuation += blockAttenuation + min(blockAttenuation, circularizedPerBlockObstacleAttenuation) * m_pointObstacleBoost;
if (attenuation < 1.0f)
setLight(x, y, lvalue + ScalarLightTraits::subtract(light.value, attenuation));
}
}
}
}
template <>
void CellularLightArray<ColoredLightTraits>::calculatePointLighting(size_t xmin, size_t ymin, size_t xmax, size_t ymax) {
float perBlockObstacleAttenuation = 1.0f / m_pointMaxObstacle;
float perBlockAirAttenuation = 1.0f / m_pointMaxAir;
for (PointLight light : m_pointLights) {
if (light.position[0] < 0 || light.position[0] > m_width - 1 || light.position[1] < 0 || light.position[1] > m_height - 1)
continue;
float maxIntensity = ColoredLightTraits::maxIntensity(light.value);
Vec2F beamDirection = Vec2F(1, 0).rotate(light.beamAngle);
float maxRange = maxIntensity * m_pointMaxAir;
// The min / max considering the radius of the light
size_t lxmin = std::floor(std::max<float>(xmin, light.position[0] - maxRange));
size_t lymin = std::floor(std::max<float>(ymin, light.position[1] - maxRange));
size_t lxmax = std::ceil(std::min<float>(xmax, light.position[0] + maxRange));
size_t lymax = std::ceil(std::min<float>(ymax, light.position[1] + maxRange));
for (size_t x = lxmin; x < lxmax; ++x) {
for (size_t y = lymin; y < lymax; ++y) {
LightValue lvalue = getLight(x, y);
// + 0.5f to correct block position to center
Vec2F blockPos = Vec2F(x + 0.5f, y + 0.5f);
Vec2F relativeLightPosition = blockPos - light.position;
float distance = relativeLightPosition.magnitude();
if (distance == 0.0f) {
setLight(x, y, light.value + lvalue);
continue;
}
float attenuation = distance * perBlockAirAttenuation;
if (attenuation >= 1.0f)
continue;
Vec2F direction = relativeLightPosition / distance;
if (light.beam > 0.0f) {
attenuation += (1.0f - light.beamAmbience) * clamp(light.beam * (1.0f - direction * beamDirection), 0.0f, 1.0f);
if (attenuation >= 1.0f)
continue;
}
float remainingAttenuation = maxIntensity - attenuation;
if (remainingAttenuation <= 0.0f)
continue;
// Need to circularize manhattan attenuation here
float circularizedPerBlockObstacleAttenuation = perBlockObstacleAttenuation / max(fabs(direction[0]), fabs(direction[1]));
float blockAttenuation = lineAttenuation(blockPos, light.position, circularizedPerBlockObstacleAttenuation, remainingAttenuation);
// Apply single obstacle boost (determine single obstacle by one
// block unit of attenuation).
attenuation += blockAttenuation + min(blockAttenuation, circularizedPerBlockObstacleAttenuation) * m_pointObstacleBoost;
if (attenuation < 1.0f)
setLight(x, y, lvalue + ColoredLightTraits::subtract(light.value, attenuation));
}
}
}
}
}
|