Веб-сайт самохостера Lotigara

summaryrefslogtreecommitdiff
path: root/source/base/StarCellularLightArray.cpp
blob: c20cd5c38183bc17fdf3120091b2ab763b8b55d8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#include "StarCellularLightArray.hpp"
#include "StarInterpolation.hpp"
// just specializing these in a cpp file so I can iterate on them without recompiling like 40 files!!

namespace Star {

template <>
void CellularLightArray<ScalarLightTraits>::calculatePointLighting(size_t xmin, size_t ymin, size_t xmax, size_t ymax) {
  float pointPerBlockObstacleAttenuation = 1.0f / m_pointMaxObstacle;
  float pointPerBlockAirAttenuation = 1.0f / m_pointMaxAir;

  for (PointLight light : m_pointLights) {
    if (light.position[0] < 0 || light.position[0] > m_width - 1 || light.position[1] < 0 || light.position[1] > m_height - 1)
      continue;

    float maxIntensity = ScalarLightTraits::maxIntensity(light.value);
    Vec2F beamDirection = Vec2F(1, 0).rotate(light.beamAngle);
    float perBlockObstacleAttenuation = light.asSpread ? 1.0f / m_spreadMaxObstacle : pointPerBlockObstacleAttenuation;
    float perBlockAirAttenuation = light.asSpread ? 1.0f / m_spreadMaxAir : pointPerBlockAirAttenuation;

    float maxRange = maxIntensity * (light.asSpread ? m_spreadMaxAir : m_pointMaxAir);
    // The min / max considering the radius of the light
    size_t lxmin = std::floor(std::max<float>(xmin, light.position[0] - maxRange));
    size_t lymin = std::floor(std::max<float>(ymin, light.position[1] - maxRange));
    size_t lxmax = std::ceil(std::min<float>(xmax, light.position[0] + maxRange));
    size_t lymax = std::ceil(std::min<float>(ymax, light.position[1] + maxRange));

    for (size_t x = lxmin; x < lxmax; ++x) {
      for (size_t y = lymin; y < lymax; ++y) {
        LightValue lvalue = getLight(x, y);
        // + 0.5f to correct block position to center
        Vec2F blockPos = Vec2F(x + 0.5f, y + 0.5f);

        Vec2F relativeLightPosition = blockPos - light.position;
        float distance = relativeLightPosition.magnitude();
        if (distance == 0.0f) {
          setLight(x, y, light.value + lvalue);
          continue;
        }

        float attenuation = distance * perBlockAirAttenuation;
        if (attenuation >= 1.0f)
          continue;

        Vec2F direction = relativeLightPosition / distance;
        if (light.beam > 0.0001f) {
          attenuation += (1.0f - light.beamAmbience) * clamp(light.beam * (1.0f - direction * beamDirection), 0.0f, 1.0f);
          if (attenuation >= 1.0f)
            continue;
        }

        float remainingAttenuation = maxIntensity - attenuation;
        if (remainingAttenuation <= 0.0f)
          continue;

        // Need to circularize manhattan attenuation here
        float circularizedPerBlockObstacleAttenuation = perBlockObstacleAttenuation / max(fabs(direction[0]), fabs(direction[1]));
        float blockAttenuation = lineAttenuation(blockPos, light.position, circularizedPerBlockObstacleAttenuation, remainingAttenuation);

        attenuation += blockAttenuation;
        // Apply single obstacle boost (determine single obstacle by one
        // block unit of attenuation).
        if (!light.asSpread)
         attenuation += min(blockAttenuation, circularizedPerBlockObstacleAttenuation) * m_pointObstacleBoost;

        if (attenuation < 1.0f) {
          if (m_pointAdditive) {
            auto newLight = ScalarLightTraits::subtract(light.value, attenuation);
            if (ScalarLightTraits::maxIntensity(newLight) > 0.0001f)
              setLight(x, y, lvalue + (light.asSpread ? newLight * 0.15f : newLight));
          } else {
            setLight(x, y, ScalarLightTraits::max(ScalarLightTraits::subtract(light.value, attenuation), lvalue));
          }
        }
      }
    }
  }
}

template <>
void CellularLightArray<ColoredLightTraits>::calculatePointLighting(size_t xmin, size_t ymin, size_t xmax, size_t ymax) {
  float pointPerBlockObstacleAttenuation = 1.0f / m_pointMaxObstacle;
  float pointPerBlockAirAttenuation = 1.0f / m_pointMaxAir;

  for (PointLight light : m_pointLights) {
    if (light.position[0] < 0 || light.position[0] > m_width - 1 || light.position[1] < 0 || light.position[1] > m_height - 1)
      continue;

    float maxIntensity = ColoredLightTraits::maxIntensity(light.value);
    Vec2F beamDirection = Vec2F(1, 0).rotate(light.beamAngle);
    float perBlockObstacleAttenuation = light.asSpread ? 1.0f / m_spreadMaxObstacle : pointPerBlockObstacleAttenuation;
    float perBlockAirAttenuation = light.asSpread ? 1.0f / m_spreadMaxAir : pointPerBlockAirAttenuation;

    float maxRange = maxIntensity * (light.asSpread ? m_spreadMaxAir : m_pointMaxAir);
    // The min / max considering the radius of the light
    size_t lxmin = std::floor(std::max<float>(xmin, light.position[0] - maxRange));
    size_t lymin = std::floor(std::max<float>(ymin, light.position[1] - maxRange));
    size_t lxmax = std::ceil(std::min<float>(xmax, light.position[0] + maxRange));
    size_t lymax = std::ceil(std::min<float>(ymax, light.position[1] + maxRange));

    for (size_t x = lxmin; x < lxmax; ++x) {
      for (size_t y = lymin; y < lymax; ++y) {
        LightValue lvalue = getLight(x, y);
        // + 0.5f to correct block position to center
        Vec2F blockPos = Vec2F(x + 0.5f, y + 0.5f);

        Vec2F relativeLightPosition = blockPos - light.position;
        float distance = relativeLightPosition.magnitude();
        if (distance == 0.0f) {
          setLight(x, y, light.value + lvalue);
          continue;
        }

        float attenuation = distance * perBlockAirAttenuation;
        if (attenuation >= 1.0f)
          continue;

        Vec2F direction = relativeLightPosition / distance;
        if (light.beam > 0.0f) {
          attenuation += (1.0f - light.beamAmbience) * clamp(light.beam * (1.0f - direction * beamDirection), 0.0f, 1.0f);
          if (attenuation >= 1.0f)
            continue;
        }

        float remainingAttenuation = maxIntensity - attenuation;
        if (remainingAttenuation <= 0.0f)
          continue;

        // Need to circularize manhattan attenuation here
        float circularizedPerBlockObstacleAttenuation = perBlockObstacleAttenuation / max(fabs(direction[0]), fabs(direction[1]));
        float blockAttenuation = lineAttenuation(blockPos, light.position, circularizedPerBlockObstacleAttenuation, remainingAttenuation);

        attenuation += blockAttenuation;
        // Apply single obstacle boost (determine single obstacle by one
        // block unit of attenuation).
        if (!light.asSpread)
          attenuation += min(blockAttenuation, circularizedPerBlockObstacleAttenuation) * m_pointObstacleBoost;

        if (attenuation < 1.0f) {
          if (m_pointAdditive) {
            auto newLight = ColoredLightTraits::subtract(light.value, attenuation);
            if (ColoredLightTraits::maxIntensity(newLight) > 0.0001f)
              setLight(x, y, lvalue + (light.asSpread ? newLight * 0.15f : newLight));
          } else {
            setLight(x, y, ColoredLightTraits::max(ColoredLightTraits::subtract(light.value, attenuation), lvalue));
          }
        }
      }
    }
  }
}

}