Веб-сайт самохостера Lotigara

summaryrefslogtreecommitdiff
path: root/source/core/StarMatrix3.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'source/core/StarMatrix3.hpp')
-rw-r--r--source/core/StarMatrix3.hpp456
1 files changed, 456 insertions, 0 deletions
diff --git a/source/core/StarMatrix3.hpp b/source/core/StarMatrix3.hpp
new file mode 100644
index 0000000..6c688c8
--- /dev/null
+++ b/source/core/StarMatrix3.hpp
@@ -0,0 +1,456 @@
+#ifndef STAR_MATRIX3_HPP
+#define STAR_MATRIX3_HPP
+
+#include "StarVector.hpp"
+
+namespace Star {
+
+template <typename T>
+class Matrix3 {
+public:
+ typedef Vector<T, 3> Vec3;
+ typedef Vector<T, 2> Vec2;
+ typedef Array<Vec3, 3> Rows;
+
+ // Only enable pointer access if we know that our internal rows are not
+ // padded
+ template <typename RT = void>
+ using EnableIfContiguousStorage =
+ typename std::enable_if<sizeof(Vec3) == 3 * sizeof(T) && sizeof(Rows) == 3 * sizeof(Vec3), RT>::type;
+
+ static Matrix3 identity();
+
+ // Construct an affine 2d transform
+ static Matrix3 rotation(T angle, Vec2 const& point = Vec2());
+ static Matrix3 translation(Vec2 const& point);
+ static Matrix3 scaling(T scale, Vec2 const& point = Vec2());
+ static Matrix3 scaling(Vec2 const& scale, Vec2 const& point = Vec2());
+
+ Matrix3();
+
+ Matrix3(T r1c1, T r1c2, T r1c3, T r2c1, T r2c2, T r2c3, T r3c1, T r3c2, T r3c3);
+
+ Matrix3(Vec3 const& r1, Vec3 const& r2, Vec3 const& r3);
+
+ Matrix3(T const* ptr);
+ template <typename T2>
+ Matrix3(Matrix3<T2> const& m);
+
+ template <typename T2>
+ Matrix3& operator=(Matrix3<T2> const& m);
+
+ // Row-major indexing
+ Vec3& operator[](size_t const i);
+ Vec3 const& operator[](size_t const i) const;
+
+ // Gives pointer to row major storage
+ EnableIfContiguousStorage<T*> ptr();
+ EnableIfContiguousStorage<T const*> ptr() const;
+
+ // Copy to an existing array
+ void copy(T* loc) const;
+
+ Vec3 row(size_t i) const;
+ template <typename T2>
+ void setRow(size_t i, Vector<T2, 3> const& v);
+
+ Vec3 col(size_t i);
+ template <typename T2>
+ void setCol(size_t i, Vector<T2, 3> const& v);
+
+ T determinant() const;
+ Vec3 trace() const;
+ Matrix3 inverse() const;
+ bool isOrthogonal(T tolerance) const;
+
+ void transpose();
+ void orthogonalize();
+ void invert();
+
+ // Apply the given 2d affine transformation to this matrix in global
+ // coordinates
+ void rotate(T angle, Vec2 const& point = Vec2());
+ void translate(Vec2 const& point);
+ void scale(Vec2 const& scale, Vec2 const& point = Vec2());
+ void scale(T scale, Vec2 const& point = Vec2());
+
+ // Do an affine transformation of the given 2d vector.
+ template <typename T2>
+ Vector<T2, 2> transformVec2(Vector<T2, 2> const& v2) const;
+
+ // The resulting angle of a transformation on any ray with this angle.
+ float transformAngle(float angle) const;
+
+ bool operator==(Matrix3 const& m2) const;
+ bool operator!=(Matrix3 const& m2) const;
+
+ Matrix3& operator*=(T const& s);
+ Matrix3& operator/=(T const& s);
+ Matrix3 operator*(T const& s) const;
+ Matrix3 operator/(T const& s) const;
+ Matrix3 operator-() const;
+
+ template <typename T2>
+ Matrix3& operator+=(Matrix3<T2> const& m2);
+
+ template <typename T2>
+ Matrix3& operator-=(Matrix3<T2> const& m2);
+
+ template <typename T2>
+ Matrix3& operator*=(Matrix3<T2> const& m2);
+
+ template <typename T2>
+ Matrix3 operator+(Matrix3<T2> const& m2) const;
+
+ template <typename T2>
+ Matrix3 operator-(Matrix3<T2> const& m2) const;
+
+ template <typename T2>
+ Matrix3 operator*(Matrix3<T2> const& m2) const;
+
+ template <typename T2>
+ Vec3 operator*(Vector<T2, 3> const& v) const;
+
+private:
+ Rows m_rows;
+};
+
+typedef Matrix3<float> Mat3F;
+typedef Matrix3<double> Mat3D;
+
+template <typename T>
+Matrix3<T> Matrix3<T>::identity() {
+ return Matrix3(1, 0, 0, 0, 1, 0, 0, 0, 1);
+}
+
+template <typename T>
+Matrix3<T> Matrix3<T>::rotation(T angle, Vec2 const& point) {
+ T s = sin(angle);
+ T c = cos(angle);
+ return Matrix3(c, -s, point[0] - c * point[0] + s * point[1], s, c, point[1] - s * point[0] - c * point[1], 0, 0, 1);
+}
+
+template <typename T>
+Matrix3<T> Matrix3<T>::translation(Vec2 const& point) {
+ return Matrix3(1, 0, point[0], 0, 1, point[1], 0, 0, 1);
+}
+
+template <typename T>
+Matrix3<T> Matrix3<T>::scaling(T scale, Vec2 const& point) {
+ return scaling(Vec2::filled(scale), point);
+}
+
+template <typename T>
+Matrix3<T> Matrix3<T>::scaling(Vec2 const& scale, Vec2 const& point) {
+ return Matrix3(scale[0], 0, point[0] - point[0] * scale[0], 0, scale[1], point[1] - point[1] * scale[1], 0, 0, 1);
+}
+
+template <typename T>
+Matrix3<T>::Matrix3() {}
+
+template <typename T>
+Matrix3<T>::Matrix3(T r1c1, T r1c2, T r1c3, T r2c1, T r2c2, T r2c3, T r3c1, T r3c2, T r3c3)
+ : m_rows(Vec3(r1c1, r1c2, r1c3), Vec3(r2c1, r2c2, r2c3), Vec3(r3c1, r3c2, r3c3)) {}
+
+template <typename T>
+Matrix3<T>::Matrix3(const Vec3& r1, const Vec3& r2, const Vec3& r3)
+ : m_rows{r1, r2, r3} {}
+
+template <typename T>
+Matrix3<T>::Matrix3(T const* ptr)
+ : m_rows{Vec3(ptr), Vec3(ptr + 3), Vec3(ptr + 6)} {}
+
+template <typename T>
+template <typename T2>
+Matrix3<T>::Matrix3(const Matrix3<T2>& m) {
+ *this = m;
+}
+
+template <typename T>
+template <typename T2>
+Matrix3<T>& Matrix3<T>::operator=(const Matrix3<T2>& m) {
+ m_rows = m.m_rows;
+ return *this;
+}
+
+template <typename T>
+auto Matrix3<T>::operator[](const size_t i) -> Vec3 & {
+ return m_rows[i];
+}
+
+template <typename T>
+auto Matrix3<T>::operator[](const size_t i) const -> Vec3 const & {
+ return m_rows[i];
+}
+
+template <typename T>
+auto Matrix3<T>::ptr() -> EnableIfContiguousStorage<T*> {
+ return m_rows[0].ptr();
+}
+
+template <typename T>
+auto Matrix3<T>::ptr() const -> EnableIfContiguousStorage<T const*> {
+ return m_rows[0].ptr();
+}
+
+template <typename T>
+void Matrix3<T>::copy(T* loc) const {
+ m_rows[0].copyFrom(loc);
+ m_rows[1].copyFrom(loc + 3);
+ m_rows[2].copyFrom(loc + 6);
+}
+
+template <typename T>
+auto Matrix3<T>::row(size_t i) const -> Vec3 {
+ return operator[](i);
+}
+
+template <typename T>
+template <typename T2>
+void Matrix3<T>::setRow(size_t i, const Vector<T2, 3>& v) {
+ operator[](i) = Vec3(v);
+}
+
+template <typename T>
+auto Matrix3<T>::col(size_t i) -> Vec3 {
+ return Vec3(m_rows[0][i], m_rows[1][i], m_rows[2][i]);
+}
+
+template <typename T>
+template <typename T2>
+void Matrix3<T>::setCol(size_t i, const Vector<T2, 3>& v) {
+ m_rows[0][i] = T(v[0]);
+ m_rows[1][i] = T(v[1]);
+ m_rows[2][i] = T(v[2]);
+}
+
+template <typename T>
+T Matrix3<T>::determinant() const {
+ return m_rows[0][0] * m_rows[1][1] * m_rows[2][2] - m_rows[0][0] * m_rows[2][1] * m_rows[1][2]
+ + m_rows[1][0] * m_rows[2][1] * m_rows[0][2] - m_rows[1][0] * m_rows[0][1] * m_rows[2][2]
+ + m_rows[2][0] * m_rows[0][1] * m_rows[1][2] - m_rows[2][0] * m_rows[1][1] * m_rows[0][2];
+}
+
+template <typename T>
+void Matrix3<T>::transpose() {
+ std::swap(m_rows[1][0], m_rows[0][1]);
+ std::swap(m_rows[2][0], m_rows[0][2]);
+ std::swap(m_rows[2][1], m_rows[1][2]);
+}
+
+template <typename T>
+void Matrix3<T>::invert() {
+ T d = determinant();
+
+ m_rows[0][0] = (m_rows[1][1] * m_rows[2][2] - m_rows[1][2] * m_rows[2][1]) / d;
+ m_rows[0][1] = -(m_rows[0][1] * m_rows[2][2] - m_rows[0][2] * m_rows[2][1]) / d;
+ m_rows[0][2] = (m_rows[0][1] * m_rows[1][2] - m_rows[0][2] * m_rows[1][1]) / d;
+ m_rows[1][0] = -(m_rows[1][0] * m_rows[2][2] - m_rows[1][2] * m_rows[2][0]) / d;
+ m_rows[1][1] = (m_rows[0][0] * m_rows[2][2] - m_rows[0][2] * m_rows[2][0]) / d;
+ m_rows[1][2] = -(m_rows[0][0] * m_rows[1][2] - m_rows[0][2] * m_rows[1][0]) / d;
+ m_rows[2][0] = (m_rows[1][0] * m_rows[2][1] - m_rows[1][1] * m_rows[2][0]) / d;
+ m_rows[2][1] = -(m_rows[0][0] * m_rows[2][1] - m_rows[0][1] * m_rows[2][0]) / d;
+ m_rows[2][2] = (m_rows[0][0] * m_rows[1][1] - m_rows[0][1] * m_rows[1][0]) / d;
+}
+
+template <typename T>
+Matrix3<T> Matrix3<T>::inverse() const {
+ auto m = *this;
+ m.invert();
+ return m;
+}
+
+template <typename T>
+void Matrix3<T>::orthogonalize() {
+ m_rows[0].normalize();
+ T dot = m_rows[0] * m_rows[1];
+ m_rows[1][0] -= m_rows[0][0] * dot;
+ m_rows[1][1] -= m_rows[0][1] * dot;
+ m_rows[1][2] -= m_rows[0][2] * dot;
+ m_rows[1].normalize();
+
+ dot = m_rows[1] * m_rows[2];
+ m_rows[2][0] -= m_rows[1][0] * dot;
+ m_rows[2][1] -= m_rows[1][1] * dot;
+ m_rows[2][2] -= m_rows[1][2] * dot;
+ m_rows[2].normalize();
+}
+
+template <typename T>
+bool Matrix3<T>::isOrthogonal(T tolerance) const {
+ T det = determinant();
+ return std::fabs(det - 1) < tolerance || std::fabs(det + 1) < tolerance;
+}
+
+template <typename T>
+void Matrix3<T>::rotate(T angle, Vec2 const& point) {
+ *this = rotation(angle, point) * *this;
+}
+
+template <typename T>
+void Matrix3<T>::translate(Vec2 const& point) {
+ *this = translation(point) * *this;
+}
+
+template <typename T>
+void Matrix3<T>::scale(Vec2 const& scale, Vec2 const& point) {
+ *this = scaling(scale, point) * *this;
+}
+
+template <typename T>
+void Matrix3<T>::scale(T scale, Vec2 const& point) {
+ *this = scaling(scale, point) * *this;
+}
+
+template <typename T>
+template <typename T2>
+Vector<T2, 2> Matrix3<T>::transformVec2(Vector<T2, 2> const& point) const {
+ Vector<T2, 3> res = (*this) * Vector<T2, 3>(point, 1);
+ return res.vec2();
+}
+
+template <typename T>
+float Matrix3<T>::transformAngle(float angle) const {
+ Vec2 a = Vec2::withAngle(angle, 1.0f);
+ Matrix3 m = *this;
+ m[0][2] = 0;
+ m[1][2] = 0;
+ return m.transformVec2(a).angle();
+}
+
+template <typename T>
+bool Matrix3<T>::operator==(Matrix3 const& m2) const {
+ return tie(m_rows[0], m_rows[1], m_rows[2]) == tie(m2.m_rows[0], m2.m_rows[1], m2.m_rows[2]);
+}
+
+template <typename T>
+bool Matrix3<T>::operator!=(Matrix3 const& m2) const {
+ return tie(m_rows[0], m_rows[1], m_rows[2]) != tie(m2.m_rows[0], m2.m_rows[1], m2.m_rows[2]);
+}
+
+template <typename T>
+Matrix3<T>& Matrix3<T>::operator*=(const T& s) {
+ m_rows[0] *= s;
+ m_rows[1] *= s;
+ m_rows[2] *= s;
+ return *this;
+}
+
+template <typename T>
+Matrix3<T>& Matrix3<T>::operator/=(const T& s) {
+ m_rows[0] /= s;
+ m_rows[1] /= s;
+ m_rows[2] /= s;
+ return *this;
+}
+
+template <typename T>
+auto Matrix3<T>::trace() const -> Vec3 {
+ return Vec3(m_rows[0][0], m_rows[1][1], m_rows[2][2]);
+}
+
+template <typename T>
+Matrix3<T> Matrix3<T>::operator-() const {
+ return Matrix3(-m_rows[0], -m_rows[1], -m_rows[2]);
+}
+
+template <typename T>
+template <typename T2>
+Matrix3<T>& Matrix3<T>::operator+=(const Matrix3<T2>& m) {
+ m_rows[0] += m[0];
+ m_rows[1] += m[1];
+ m_rows[2] += m[2];
+ return *this;
+}
+
+template <typename T>
+template <typename T2>
+Matrix3<T>& Matrix3<T>::operator-=(const Matrix3<T2>& m) {
+ m_rows[0] -= m[0];
+ m_rows[1] -= m[1];
+ m_rows[2] -= m[2];
+ return *this;
+}
+
+template <typename T>
+template <typename T2>
+Matrix3<T>& Matrix3<T>::operator*=(Matrix3<T2> const& m2) {
+ *this = *this * m2;
+ return *this;
+}
+
+template <typename T>
+template <typename T2>
+Matrix3<T> Matrix3<T>::operator+(const Matrix3<T2>& m2) const {
+ return Matrix3<T>(m_rows[0] + m2[0], m_rows[1] + m2[1], m_rows[2] + m2[2]);
+}
+
+template <typename T>
+template <typename T2>
+Matrix3<T> Matrix3<T>::operator-(const Matrix3<T2>& m2) const {
+ return Matrix3<T>(m_rows[0] - m2[0], m_rows[1] - m2[1], m_rows[2] - m2[2]);
+}
+
+template <typename T>
+template <typename T2>
+Matrix3<T> Matrix3<T>::operator*(const Matrix3<T2>& m2) const {
+ return Matrix3<T>(m_rows[0][0] * m2[0][0] + m_rows[0][1] * m2[1][0] + m_rows[0][2] * m2[2][0],
+ m_rows[0][0] * m2[0][1] + m_rows[0][1] * m2[1][1] + m_rows[0][2] * m2[2][1],
+ m_rows[0][0] * m2[0][2] + m_rows[0][1] * m2[1][2] + m_rows[0][2] * m2[2][2],
+ m_rows[1][0] * m2[0][0] + m_rows[1][1] * m2[1][0] + m_rows[1][2] * m2[2][0],
+ m_rows[1][0] * m2[0][1] + m_rows[1][1] * m2[1][1] + m_rows[1][2] * m2[2][1],
+ m_rows[1][0] * m2[0][2] + m_rows[1][1] * m2[1][2] + m_rows[1][2] * m2[2][2],
+ m_rows[2][0] * m2[0][0] + m_rows[2][1] * m2[1][0] + m_rows[2][2] * m2[2][0],
+ m_rows[2][0] * m2[0][1] + m_rows[2][1] * m2[1][1] + m_rows[2][2] * m2[2][1],
+ m_rows[2][0] * m2[0][2] + m_rows[2][1] * m2[1][2] + m_rows[2][2] * m2[2][2]);
+}
+
+template <typename T>
+template <typename T2>
+auto Matrix3<T>::operator*(const Vector<T2, 3>& u) const -> Vec3 {
+ return Vec3(m_rows[0][0] * u[0] + m_rows[0][1] * u[1] + m_rows[0][2] * u[2],
+ m_rows[1][0] * u[0] + m_rows[1][1] * u[1] + m_rows[1][2] * u[2],
+ m_rows[2][0] * u[0] + m_rows[2][1] * u[1] + m_rows[2][2] * u[2]);
+}
+
+template <typename T>
+Matrix3<T> Matrix3<T>::operator/(const T& s) const {
+ return Matrix3<T>(m_rows[0] / s, m_rows[1] / s, m_rows[2] / s);
+}
+
+template <typename T>
+Matrix3<T> Matrix3<T>::operator*(const T& s) const {
+ return Matrix3<T>(m_rows[0] * s, m_rows[1] * s, m_rows[2] * s);
+}
+
+template <typename T>
+T determinant(const Matrix3<T>& m) {
+ return m.determinant();
+}
+
+template <typename T>
+Matrix3<T> transpose(Matrix3<T> m) {
+ return m.transpose();
+}
+
+template <typename T>
+Matrix3<T> ortho(Matrix3<T> mat) {
+ return mat.orthogonalize();
+}
+
+template <typename T>
+Matrix3<T> operator*(T s, const Matrix3<T>& m) {
+ return m * s;
+}
+
+template <typename T>
+std::ostream& operator<<(std::ostream& os, Matrix3<T> m) {
+ os << m[0][0] << ' ' << m[0][1] << ' ' << m[0][2] << std::endl;
+ os << m[1][0] << ' ' << m[1][1] << ' ' << m[1][2] << std::endl;
+ os << m[2][0] << ' ' << m[2][1] << ' ' << m[2][2];
+ return os;
+}
+
+}
+
+#endif