diff options
Diffstat (limited to 'source/core/StarMatrix3.hpp')
-rw-r--r-- | source/core/StarMatrix3.hpp | 456 |
1 files changed, 456 insertions, 0 deletions
diff --git a/source/core/StarMatrix3.hpp b/source/core/StarMatrix3.hpp new file mode 100644 index 0000000..6c688c8 --- /dev/null +++ b/source/core/StarMatrix3.hpp @@ -0,0 +1,456 @@ +#ifndef STAR_MATRIX3_HPP +#define STAR_MATRIX3_HPP + +#include "StarVector.hpp" + +namespace Star { + +template <typename T> +class Matrix3 { +public: + typedef Vector<T, 3> Vec3; + typedef Vector<T, 2> Vec2; + typedef Array<Vec3, 3> Rows; + + // Only enable pointer access if we know that our internal rows are not + // padded + template <typename RT = void> + using EnableIfContiguousStorage = + typename std::enable_if<sizeof(Vec3) == 3 * sizeof(T) && sizeof(Rows) == 3 * sizeof(Vec3), RT>::type; + + static Matrix3 identity(); + + // Construct an affine 2d transform + static Matrix3 rotation(T angle, Vec2 const& point = Vec2()); + static Matrix3 translation(Vec2 const& point); + static Matrix3 scaling(T scale, Vec2 const& point = Vec2()); + static Matrix3 scaling(Vec2 const& scale, Vec2 const& point = Vec2()); + + Matrix3(); + + Matrix3(T r1c1, T r1c2, T r1c3, T r2c1, T r2c2, T r2c3, T r3c1, T r3c2, T r3c3); + + Matrix3(Vec3 const& r1, Vec3 const& r2, Vec3 const& r3); + + Matrix3(T const* ptr); + template <typename T2> + Matrix3(Matrix3<T2> const& m); + + template <typename T2> + Matrix3& operator=(Matrix3<T2> const& m); + + // Row-major indexing + Vec3& operator[](size_t const i); + Vec3 const& operator[](size_t const i) const; + + // Gives pointer to row major storage + EnableIfContiguousStorage<T*> ptr(); + EnableIfContiguousStorage<T const*> ptr() const; + + // Copy to an existing array + void copy(T* loc) const; + + Vec3 row(size_t i) const; + template <typename T2> + void setRow(size_t i, Vector<T2, 3> const& v); + + Vec3 col(size_t i); + template <typename T2> + void setCol(size_t i, Vector<T2, 3> const& v); + + T determinant() const; + Vec3 trace() const; + Matrix3 inverse() const; + bool isOrthogonal(T tolerance) const; + + void transpose(); + void orthogonalize(); + void invert(); + + // Apply the given 2d affine transformation to this matrix in global + // coordinates + void rotate(T angle, Vec2 const& point = Vec2()); + void translate(Vec2 const& point); + void scale(Vec2 const& scale, Vec2 const& point = Vec2()); + void scale(T scale, Vec2 const& point = Vec2()); + + // Do an affine transformation of the given 2d vector. + template <typename T2> + Vector<T2, 2> transformVec2(Vector<T2, 2> const& v2) const; + + // The resulting angle of a transformation on any ray with this angle. + float transformAngle(float angle) const; + + bool operator==(Matrix3 const& m2) const; + bool operator!=(Matrix3 const& m2) const; + + Matrix3& operator*=(T const& s); + Matrix3& operator/=(T const& s); + Matrix3 operator*(T const& s) const; + Matrix3 operator/(T const& s) const; + Matrix3 operator-() const; + + template <typename T2> + Matrix3& operator+=(Matrix3<T2> const& m2); + + template <typename T2> + Matrix3& operator-=(Matrix3<T2> const& m2); + + template <typename T2> + Matrix3& operator*=(Matrix3<T2> const& m2); + + template <typename T2> + Matrix3 operator+(Matrix3<T2> const& m2) const; + + template <typename T2> + Matrix3 operator-(Matrix3<T2> const& m2) const; + + template <typename T2> + Matrix3 operator*(Matrix3<T2> const& m2) const; + + template <typename T2> + Vec3 operator*(Vector<T2, 3> const& v) const; + +private: + Rows m_rows; +}; + +typedef Matrix3<float> Mat3F; +typedef Matrix3<double> Mat3D; + +template <typename T> +Matrix3<T> Matrix3<T>::identity() { + return Matrix3(1, 0, 0, 0, 1, 0, 0, 0, 1); +} + +template <typename T> +Matrix3<T> Matrix3<T>::rotation(T angle, Vec2 const& point) { + T s = sin(angle); + T c = cos(angle); + return Matrix3(c, -s, point[0] - c * point[0] + s * point[1], s, c, point[1] - s * point[0] - c * point[1], 0, 0, 1); +} + +template <typename T> +Matrix3<T> Matrix3<T>::translation(Vec2 const& point) { + return Matrix3(1, 0, point[0], 0, 1, point[1], 0, 0, 1); +} + +template <typename T> +Matrix3<T> Matrix3<T>::scaling(T scale, Vec2 const& point) { + return scaling(Vec2::filled(scale), point); +} + +template <typename T> +Matrix3<T> Matrix3<T>::scaling(Vec2 const& scale, Vec2 const& point) { + return Matrix3(scale[0], 0, point[0] - point[0] * scale[0], 0, scale[1], point[1] - point[1] * scale[1], 0, 0, 1); +} + +template <typename T> +Matrix3<T>::Matrix3() {} + +template <typename T> +Matrix3<T>::Matrix3(T r1c1, T r1c2, T r1c3, T r2c1, T r2c2, T r2c3, T r3c1, T r3c2, T r3c3) + : m_rows(Vec3(r1c1, r1c2, r1c3), Vec3(r2c1, r2c2, r2c3), Vec3(r3c1, r3c2, r3c3)) {} + +template <typename T> +Matrix3<T>::Matrix3(const Vec3& r1, const Vec3& r2, const Vec3& r3) + : m_rows{r1, r2, r3} {} + +template <typename T> +Matrix3<T>::Matrix3(T const* ptr) + : m_rows{Vec3(ptr), Vec3(ptr + 3), Vec3(ptr + 6)} {} + +template <typename T> +template <typename T2> +Matrix3<T>::Matrix3(const Matrix3<T2>& m) { + *this = m; +} + +template <typename T> +template <typename T2> +Matrix3<T>& Matrix3<T>::operator=(const Matrix3<T2>& m) { + m_rows = m.m_rows; + return *this; +} + +template <typename T> +auto Matrix3<T>::operator[](const size_t i) -> Vec3 & { + return m_rows[i]; +} + +template <typename T> +auto Matrix3<T>::operator[](const size_t i) const -> Vec3 const & { + return m_rows[i]; +} + +template <typename T> +auto Matrix3<T>::ptr() -> EnableIfContiguousStorage<T*> { + return m_rows[0].ptr(); +} + +template <typename T> +auto Matrix3<T>::ptr() const -> EnableIfContiguousStorage<T const*> { + return m_rows[0].ptr(); +} + +template <typename T> +void Matrix3<T>::copy(T* loc) const { + m_rows[0].copyFrom(loc); + m_rows[1].copyFrom(loc + 3); + m_rows[2].copyFrom(loc + 6); +} + +template <typename T> +auto Matrix3<T>::row(size_t i) const -> Vec3 { + return operator[](i); +} + +template <typename T> +template <typename T2> +void Matrix3<T>::setRow(size_t i, const Vector<T2, 3>& v) { + operator[](i) = Vec3(v); +} + +template <typename T> +auto Matrix3<T>::col(size_t i) -> Vec3 { + return Vec3(m_rows[0][i], m_rows[1][i], m_rows[2][i]); +} + +template <typename T> +template <typename T2> +void Matrix3<T>::setCol(size_t i, const Vector<T2, 3>& v) { + m_rows[0][i] = T(v[0]); + m_rows[1][i] = T(v[1]); + m_rows[2][i] = T(v[2]); +} + +template <typename T> +T Matrix3<T>::determinant() const { + return m_rows[0][0] * m_rows[1][1] * m_rows[2][2] - m_rows[0][0] * m_rows[2][1] * m_rows[1][2] + + m_rows[1][0] * m_rows[2][1] * m_rows[0][2] - m_rows[1][0] * m_rows[0][1] * m_rows[2][2] + + m_rows[2][0] * m_rows[0][1] * m_rows[1][2] - m_rows[2][0] * m_rows[1][1] * m_rows[0][2]; +} + +template <typename T> +void Matrix3<T>::transpose() { + std::swap(m_rows[1][0], m_rows[0][1]); + std::swap(m_rows[2][0], m_rows[0][2]); + std::swap(m_rows[2][1], m_rows[1][2]); +} + +template <typename T> +void Matrix3<T>::invert() { + T d = determinant(); + + m_rows[0][0] = (m_rows[1][1] * m_rows[2][2] - m_rows[1][2] * m_rows[2][1]) / d; + m_rows[0][1] = -(m_rows[0][1] * m_rows[2][2] - m_rows[0][2] * m_rows[2][1]) / d; + m_rows[0][2] = (m_rows[0][1] * m_rows[1][2] - m_rows[0][2] * m_rows[1][1]) / d; + m_rows[1][0] = -(m_rows[1][0] * m_rows[2][2] - m_rows[1][2] * m_rows[2][0]) / d; + m_rows[1][1] = (m_rows[0][0] * m_rows[2][2] - m_rows[0][2] * m_rows[2][0]) / d; + m_rows[1][2] = -(m_rows[0][0] * m_rows[1][2] - m_rows[0][2] * m_rows[1][0]) / d; + m_rows[2][0] = (m_rows[1][0] * m_rows[2][1] - m_rows[1][1] * m_rows[2][0]) / d; + m_rows[2][1] = -(m_rows[0][0] * m_rows[2][1] - m_rows[0][1] * m_rows[2][0]) / d; + m_rows[2][2] = (m_rows[0][0] * m_rows[1][1] - m_rows[0][1] * m_rows[1][0]) / d; +} + +template <typename T> +Matrix3<T> Matrix3<T>::inverse() const { + auto m = *this; + m.invert(); + return m; +} + +template <typename T> +void Matrix3<T>::orthogonalize() { + m_rows[0].normalize(); + T dot = m_rows[0] * m_rows[1]; + m_rows[1][0] -= m_rows[0][0] * dot; + m_rows[1][1] -= m_rows[0][1] * dot; + m_rows[1][2] -= m_rows[0][2] * dot; + m_rows[1].normalize(); + + dot = m_rows[1] * m_rows[2]; + m_rows[2][0] -= m_rows[1][0] * dot; + m_rows[2][1] -= m_rows[1][1] * dot; + m_rows[2][2] -= m_rows[1][2] * dot; + m_rows[2].normalize(); +} + +template <typename T> +bool Matrix3<T>::isOrthogonal(T tolerance) const { + T det = determinant(); + return std::fabs(det - 1) < tolerance || std::fabs(det + 1) < tolerance; +} + +template <typename T> +void Matrix3<T>::rotate(T angle, Vec2 const& point) { + *this = rotation(angle, point) * *this; +} + +template <typename T> +void Matrix3<T>::translate(Vec2 const& point) { + *this = translation(point) * *this; +} + +template <typename T> +void Matrix3<T>::scale(Vec2 const& scale, Vec2 const& point) { + *this = scaling(scale, point) * *this; +} + +template <typename T> +void Matrix3<T>::scale(T scale, Vec2 const& point) { + *this = scaling(scale, point) * *this; +} + +template <typename T> +template <typename T2> +Vector<T2, 2> Matrix3<T>::transformVec2(Vector<T2, 2> const& point) const { + Vector<T2, 3> res = (*this) * Vector<T2, 3>(point, 1); + return res.vec2(); +} + +template <typename T> +float Matrix3<T>::transformAngle(float angle) const { + Vec2 a = Vec2::withAngle(angle, 1.0f); + Matrix3 m = *this; + m[0][2] = 0; + m[1][2] = 0; + return m.transformVec2(a).angle(); +} + +template <typename T> +bool Matrix3<T>::operator==(Matrix3 const& m2) const { + return tie(m_rows[0], m_rows[1], m_rows[2]) == tie(m2.m_rows[0], m2.m_rows[1], m2.m_rows[2]); +} + +template <typename T> +bool Matrix3<T>::operator!=(Matrix3 const& m2) const { + return tie(m_rows[0], m_rows[1], m_rows[2]) != tie(m2.m_rows[0], m2.m_rows[1], m2.m_rows[2]); +} + +template <typename T> +Matrix3<T>& Matrix3<T>::operator*=(const T& s) { + m_rows[0] *= s; + m_rows[1] *= s; + m_rows[2] *= s; + return *this; +} + +template <typename T> +Matrix3<T>& Matrix3<T>::operator/=(const T& s) { + m_rows[0] /= s; + m_rows[1] /= s; + m_rows[2] /= s; + return *this; +} + +template <typename T> +auto Matrix3<T>::trace() const -> Vec3 { + return Vec3(m_rows[0][0], m_rows[1][1], m_rows[2][2]); +} + +template <typename T> +Matrix3<T> Matrix3<T>::operator-() const { + return Matrix3(-m_rows[0], -m_rows[1], -m_rows[2]); +} + +template <typename T> +template <typename T2> +Matrix3<T>& Matrix3<T>::operator+=(const Matrix3<T2>& m) { + m_rows[0] += m[0]; + m_rows[1] += m[1]; + m_rows[2] += m[2]; + return *this; +} + +template <typename T> +template <typename T2> +Matrix3<T>& Matrix3<T>::operator-=(const Matrix3<T2>& m) { + m_rows[0] -= m[0]; + m_rows[1] -= m[1]; + m_rows[2] -= m[2]; + return *this; +} + +template <typename T> +template <typename T2> +Matrix3<T>& Matrix3<T>::operator*=(Matrix3<T2> const& m2) { + *this = *this * m2; + return *this; +} + +template <typename T> +template <typename T2> +Matrix3<T> Matrix3<T>::operator+(const Matrix3<T2>& m2) const { + return Matrix3<T>(m_rows[0] + m2[0], m_rows[1] + m2[1], m_rows[2] + m2[2]); +} + +template <typename T> +template <typename T2> +Matrix3<T> Matrix3<T>::operator-(const Matrix3<T2>& m2) const { + return Matrix3<T>(m_rows[0] - m2[0], m_rows[1] - m2[1], m_rows[2] - m2[2]); +} + +template <typename T> +template <typename T2> +Matrix3<T> Matrix3<T>::operator*(const Matrix3<T2>& m2) const { + return Matrix3<T>(m_rows[0][0] * m2[0][0] + m_rows[0][1] * m2[1][0] + m_rows[0][2] * m2[2][0], + m_rows[0][0] * m2[0][1] + m_rows[0][1] * m2[1][1] + m_rows[0][2] * m2[2][1], + m_rows[0][0] * m2[0][2] + m_rows[0][1] * m2[1][2] + m_rows[0][2] * m2[2][2], + m_rows[1][0] * m2[0][0] + m_rows[1][1] * m2[1][0] + m_rows[1][2] * m2[2][0], + m_rows[1][0] * m2[0][1] + m_rows[1][1] * m2[1][1] + m_rows[1][2] * m2[2][1], + m_rows[1][0] * m2[0][2] + m_rows[1][1] * m2[1][2] + m_rows[1][2] * m2[2][2], + m_rows[2][0] * m2[0][0] + m_rows[2][1] * m2[1][0] + m_rows[2][2] * m2[2][0], + m_rows[2][0] * m2[0][1] + m_rows[2][1] * m2[1][1] + m_rows[2][2] * m2[2][1], + m_rows[2][0] * m2[0][2] + m_rows[2][1] * m2[1][2] + m_rows[2][2] * m2[2][2]); +} + +template <typename T> +template <typename T2> +auto Matrix3<T>::operator*(const Vector<T2, 3>& u) const -> Vec3 { + return Vec3(m_rows[0][0] * u[0] + m_rows[0][1] * u[1] + m_rows[0][2] * u[2], + m_rows[1][0] * u[0] + m_rows[1][1] * u[1] + m_rows[1][2] * u[2], + m_rows[2][0] * u[0] + m_rows[2][1] * u[1] + m_rows[2][2] * u[2]); +} + +template <typename T> +Matrix3<T> Matrix3<T>::operator/(const T& s) const { + return Matrix3<T>(m_rows[0] / s, m_rows[1] / s, m_rows[2] / s); +} + +template <typename T> +Matrix3<T> Matrix3<T>::operator*(const T& s) const { + return Matrix3<T>(m_rows[0] * s, m_rows[1] * s, m_rows[2] * s); +} + +template <typename T> +T determinant(const Matrix3<T>& m) { + return m.determinant(); +} + +template <typename T> +Matrix3<T> transpose(Matrix3<T> m) { + return m.transpose(); +} + +template <typename T> +Matrix3<T> ortho(Matrix3<T> mat) { + return mat.orthogonalize(); +} + +template <typename T> +Matrix3<T> operator*(T s, const Matrix3<T>& m) { + return m * s; +} + +template <typename T> +std::ostream& operator<<(std::ostream& os, Matrix3<T> m) { + os << m[0][0] << ' ' << m[0][1] << ' ' << m[0][2] << std::endl; + os << m[1][0] << ' ' << m[1][1] << ' ' << m[1][2] << std::endl; + os << m[2][0] << ' ' << m[2][1] << ' ' << m[2][2]; + return os; +} + +} + +#endif |