Веб-сайт самохостера Lotigara

summaryrefslogtreecommitdiff
path: root/source/extern
diff options
context:
space:
mode:
authorKae <80987908+Novaenia@users.noreply.github.com>2024-09-16 23:02:22 +1000
committerKae <80987908+Novaenia@users.noreply.github.com>2024-09-16 23:02:22 +1000
commit090441b80aed3c7df45ff1a6d40ed56ee895ad28 (patch)
tree3a4a8137941aa60f0674d9ed9308a45266c96e4e /source/extern
parent40299558dd4585adb6066cdade5703be7cf10b76 (diff)
make lexical casts (string -> int/float) faster
Diffstat (limited to 'source/extern')
-rw-r--r--source/extern/CMakeLists.txt1
-rw-r--r--source/extern/fast_float.h3913
2 files changed, 3914 insertions, 0 deletions
diff --git a/source/extern/CMakeLists.txt b/source/extern/CMakeLists.txt
index 336ca0d..1fd48e1 100644
--- a/source/extern/CMakeLists.txt
+++ b/source/extern/CMakeLists.txt
@@ -15,6 +15,7 @@ SET (star_extern_HEADERS
fmt/printf.h
fmt/ranges.h
fmt/std.h
+ fast_float.h
lauxlib.h
lua.h
lua.hpp
diff --git a/source/extern/fast_float.h b/source/extern/fast_float.h
new file mode 100644
index 0000000..860001d
--- /dev/null
+++ b/source/extern/fast_float.h
@@ -0,0 +1,3913 @@
+// fast_float by Daniel Lemire
+// fast_float by João Paulo Magalhaes
+//
+//
+// with contributions from Eugene Golushkov
+// with contributions from Maksim Kita
+// with contributions from Marcin Wojdyr
+// with contributions from Neal Richardson
+// with contributions from Tim Paine
+// with contributions from Fabio Pellacini
+// with contributions from Lénárd Szolnoki
+// with contributions from Jan Pharago
+// with contributions from Maya Warrier
+// with contributions from Taha Khokhar
+//
+//
+// Licensed under the Apache License, Version 2.0, or the
+// MIT License or the Boost License. This file may not be copied,
+// modified, or distributed except according to those terms.
+//
+// MIT License Notice
+//
+// MIT License
+//
+// Copyright (c) 2021 The fast_float authors
+//
+// Permission is hereby granted, free of charge, to any
+// person obtaining a copy of this software and associated
+// documentation files (the "Software"), to deal in the
+// Software without restriction, including without
+// limitation the rights to use, copy, modify, merge,
+// publish, distribute, sublicense, and/or sell copies of
+// the Software, and to permit persons to whom the Software
+// is furnished to do so, subject to the following
+// conditions:
+//
+// The above copyright notice and this permission notice
+// shall be included in all copies or substantial portions
+// of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
+// ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
+// TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
+// PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
+// SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
+// IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+// DEALINGS IN THE SOFTWARE.
+//
+// Apache License (Version 2.0) Notice
+//
+// Copyright 2021 The fast_float authors
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+//
+// BOOST License Notice
+//
+// Boost Software License - Version 1.0 - August 17th, 2003
+//
+// Permission is hereby granted, free of charge, to any person or organization
+// obtaining a copy of the software and accompanying documentation covered by
+// this license (the "Software") to use, reproduce, display, distribute,
+// execute, and transmit the Software, and to prepare derivative works of the
+// Software, and to permit third-parties to whom the Software is furnished to
+// do so, all subject to the following:
+//
+// The copyright notices in the Software and this entire statement, including
+// the above license grant, this restriction and the following disclaimer,
+// must be included in all copies of the Software, in whole or in part, and
+// all derivative works of the Software, unless such copies or derivative
+// works are solely in the form of machine-executable object code generated by
+// a source language processor.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
+// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
+// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
+// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+// DEALINGS IN THE SOFTWARE.
+//
+
+#ifndef FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H
+#define FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H
+
+#ifdef __has_include
+#if __has_include(<version>)
+#include <version>
+#endif
+#endif
+
+// Testing for https://wg21.link/N3652, adopted in C++14
+#if __cpp_constexpr >= 201304
+#define FASTFLOAT_CONSTEXPR14 constexpr
+#else
+#define FASTFLOAT_CONSTEXPR14
+#endif
+
+#if defined(__cpp_lib_bit_cast) && __cpp_lib_bit_cast >= 201806L
+#define FASTFLOAT_HAS_BIT_CAST 1
+#else
+#define FASTFLOAT_HAS_BIT_CAST 0
+#endif
+
+#if defined(__cpp_lib_is_constant_evaluated) && \
+ __cpp_lib_is_constant_evaluated >= 201811L
+#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 1
+#else
+#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 0
+#endif
+
+// Testing for relevant C++20 constexpr library features
+#if FASTFLOAT_HAS_IS_CONSTANT_EVALUATED && FASTFLOAT_HAS_BIT_CAST && \
+ __cpp_lib_constexpr_algorithms >= 201806L /*For std::copy and std::fill*/
+#define FASTFLOAT_CONSTEXPR20 constexpr
+#define FASTFLOAT_IS_CONSTEXPR 1
+#else
+#define FASTFLOAT_CONSTEXPR20
+#define FASTFLOAT_IS_CONSTEXPR 0
+#endif
+
+#if __cplusplus >= 201703L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L)
+#define FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 0
+#else
+#define FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 1
+#endif
+
+#endif // FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H
+
+#ifndef FASTFLOAT_FLOAT_COMMON_H
+#define FASTFLOAT_FLOAT_COMMON_H
+
+#include <cfloat>
+#include <cstdint>
+#include <cassert>
+#include <cstring>
+#include <type_traits>
+#include <system_error>
+#ifdef __has_include
+#if __has_include(<stdfloat>) && (__cplusplus > 202002L || _MSVC_LANG > 202002L)
+#include <stdfloat>
+#endif
+#endif
+
+namespace fast_float {
+
+#define FASTFLOAT_JSONFMT (1 << 5)
+#define FASTFLOAT_FORTRANFMT (1 << 6)
+
+enum chars_format {
+ scientific = 1 << 0,
+ fixed = 1 << 2,
+ hex = 1 << 3,
+ no_infnan = 1 << 4,
+ // RFC 8259: https://datatracker.ietf.org/doc/html/rfc8259#section-6
+ json = FASTFLOAT_JSONFMT | fixed | scientific | no_infnan,
+ // Extension of RFC 8259 where, e.g., "inf" and "nan" are allowed.
+ json_or_infnan = FASTFLOAT_JSONFMT | fixed | scientific,
+ fortran = FASTFLOAT_FORTRANFMT | fixed | scientific,
+ general = fixed | scientific
+};
+
+template <typename UC> struct from_chars_result_t {
+ UC const *ptr;
+ std::errc ec;
+};
+using from_chars_result = from_chars_result_t<char>;
+
+template <typename UC> struct parse_options_t {
+ constexpr explicit parse_options_t(chars_format fmt = chars_format::general,
+ UC dot = UC('.'))
+ : format(fmt), decimal_point(dot) {}
+
+ /** Which number formats are accepted */
+ chars_format format;
+ /** The character used as decimal point */
+ UC decimal_point;
+};
+using parse_options = parse_options_t<char>;
+
+} // namespace fast_float
+
+#if FASTFLOAT_HAS_BIT_CAST
+#include <bit>
+#endif
+
+#if (defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \
+ defined(__amd64) || defined(__aarch64__) || defined(_M_ARM64) || \
+ defined(__MINGW64__) || defined(__s390x__) || \
+ (defined(__ppc64__) || defined(__PPC64__) || defined(__ppc64le__) || \
+ defined(__PPC64LE__)) || \
+ defined(__loongarch64))
+#define FASTFLOAT_64BIT 1
+#elif (defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
+ defined(__arm__) || defined(_M_ARM) || defined(__ppc__) || \
+ defined(__MINGW32__) || defined(__EMSCRIPTEN__))
+#define FASTFLOAT_32BIT 1
+#else
+ // Need to check incrementally, since SIZE_MAX is a size_t, avoid overflow.
+// We can never tell the register width, but the SIZE_MAX is a good
+// approximation. UINTPTR_MAX and INTPTR_MAX are optional, so avoid them for max
+// portability.
+#if SIZE_MAX == 0xffff
+#error Unknown platform (16-bit, unsupported)
+#elif SIZE_MAX == 0xffffffff
+#define FASTFLOAT_32BIT 1
+#elif SIZE_MAX == 0xffffffffffffffff
+#define FASTFLOAT_64BIT 1
+#else
+#error Unknown platform (not 32-bit, not 64-bit?)
+#endif
+#endif
+
+#if ((defined(_WIN32) || defined(_WIN64)) && !defined(__clang__)) || \
+ (defined(_M_ARM64) && !defined(__MINGW32__))
+#include <intrin.h>
+#endif
+
+#if defined(_MSC_VER) && !defined(__clang__)
+#define FASTFLOAT_VISUAL_STUDIO 1
+#endif
+
+#if defined __BYTE_ORDER__ && defined __ORDER_BIG_ENDIAN__
+#define FASTFLOAT_IS_BIG_ENDIAN (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
+#elif defined _WIN32
+#define FASTFLOAT_IS_BIG_ENDIAN 0
+#else
+#if defined(__APPLE__) || defined(__FreeBSD__)
+#include <machine/endian.h>
+#elif defined(sun) || defined(__sun)
+#include <sys/byteorder.h>
+#elif defined(__MVS__)
+#include <sys/endian.h>
+#else
+#ifdef __has_include
+#if __has_include(<endian.h>)
+#include <endian.h>
+#endif //__has_include(<endian.h>)
+#endif //__has_include
+#endif
+#
+#ifndef __BYTE_ORDER__
+// safe choice
+#define FASTFLOAT_IS_BIG_ENDIAN 0
+#endif
+#
+#ifndef __ORDER_LITTLE_ENDIAN__
+// safe choice
+#define FASTFLOAT_IS_BIG_ENDIAN 0
+#endif
+#
+#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
+#define FASTFLOAT_IS_BIG_ENDIAN 0
+#else
+#define FASTFLOAT_IS_BIG_ENDIAN 1
+#endif
+#endif
+
+#if defined(__SSE2__) || (defined(FASTFLOAT_VISUAL_STUDIO) && \
+ (defined(_M_AMD64) || defined(_M_X64) || \
+ (defined(_M_IX86_FP) && _M_IX86_FP == 2)))
+#define FASTFLOAT_SSE2 1
+#endif
+
+#if defined(__aarch64__) || defined(_M_ARM64)
+#define FASTFLOAT_NEON 1
+#endif
+
+#if defined(FASTFLOAT_SSE2) || defined(FASTFLOAT_NEON)
+#define FASTFLOAT_HAS_SIMD 1
+#endif
+
+#if defined(__GNUC__)
+// disable -Wcast-align=strict (GCC only)
+#define FASTFLOAT_SIMD_DISABLE_WARNINGS \
+ _Pragma("GCC diagnostic push") \
+ _Pragma("GCC diagnostic ignored \"-Wcast-align\"")
+#else
+#define FASTFLOAT_SIMD_DISABLE_WARNINGS
+#endif
+
+#if defined(__GNUC__)
+#define FASTFLOAT_SIMD_RESTORE_WARNINGS _Pragma("GCC diagnostic pop")
+#else
+#define FASTFLOAT_SIMD_RESTORE_WARNINGS
+#endif
+
+#ifdef FASTFLOAT_VISUAL_STUDIO
+#define fastfloat_really_inline __forceinline
+#else
+#define fastfloat_really_inline inline __attribute__((always_inline))
+#endif
+
+#ifndef FASTFLOAT_ASSERT
+#define FASTFLOAT_ASSERT(x) \
+ { ((void)(x)); }
+#endif
+
+#ifndef FASTFLOAT_DEBUG_ASSERT
+#define FASTFLOAT_DEBUG_ASSERT(x) \
+ { ((void)(x)); }
+#endif
+
+// rust style `try!()` macro, or `?` operator
+#define FASTFLOAT_TRY(x) \
+ { \
+ if (!(x)) \
+ return false; \
+ }
+
+#define FASTFLOAT_ENABLE_IF(...) \
+ typename std::enable_if<(__VA_ARGS__), int>::type
+
+namespace fast_float {
+
+fastfloat_really_inline constexpr bool cpp20_and_in_constexpr() {
+#if FASTFLOAT_HAS_IS_CONSTANT_EVALUATED
+ return std::is_constant_evaluated();
+#else
+ return false;
+#endif
+}
+
+template <typename T>
+fastfloat_really_inline constexpr bool is_supported_float_type() {
+ return std::is_same<T, float>::value || std::is_same<T, double>::value
+#if __STDCPP_FLOAT32_T__
+ || std::is_same<T, std::float32_t>::value
+#endif
+#if __STDCPP_FLOAT64_T__
+ || std::is_same<T, std::float64_t>::value
+#endif
+ ;
+}
+
+template <typename UC>
+fastfloat_really_inline constexpr bool is_supported_char_type() {
+ return std::is_same<UC, char>::value || std::is_same<UC, wchar_t>::value ||
+ std::is_same<UC, char16_t>::value || std::is_same<UC, char32_t>::value;
+}
+
+// Compares two ASCII strings in a case insensitive manner.
+template <typename UC>
+inline FASTFLOAT_CONSTEXPR14 bool
+fastfloat_strncasecmp(UC const *input1, UC const *input2, size_t length) {
+ char running_diff{0};
+ for (size_t i = 0; i < length; ++i) {
+ running_diff |= (char(input1[i]) ^ char(input2[i]));
+ }
+ return (running_diff == 0) || (running_diff == 32);
+}
+
+#ifndef FLT_EVAL_METHOD
+#error "FLT_EVAL_METHOD should be defined, please include cfloat."
+#endif
+
+// a pointer and a length to a contiguous block of memory
+template <typename T> struct span {
+ const T *ptr;
+ size_t length;
+ constexpr span(const T *_ptr, size_t _length) : ptr(_ptr), length(_length) {}
+ constexpr span() : ptr(nullptr), length(0) {}
+
+ constexpr size_t len() const noexcept { return length; }
+
+ FASTFLOAT_CONSTEXPR14 const T &operator[](size_t index) const noexcept {
+ FASTFLOAT_DEBUG_ASSERT(index < length);
+ return ptr[index];
+ }
+};
+
+struct value128 {
+ uint64_t low;
+ uint64_t high;
+ constexpr value128(uint64_t _low, uint64_t _high) : low(_low), high(_high) {}
+ constexpr value128() : low(0), high(0) {}
+};
+
+/* Helper C++14 constexpr generic implementation of leading_zeroes */
+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 int
+leading_zeroes_generic(uint64_t input_num, int last_bit = 0) {
+ if (input_num & uint64_t(0xffffffff00000000)) {
+ input_num >>= 32;
+ last_bit |= 32;
+ }
+ if (input_num & uint64_t(0xffff0000)) {
+ input_num >>= 16;
+ last_bit |= 16;
+ }
+ if (input_num & uint64_t(0xff00)) {
+ input_num >>= 8;
+ last_bit |= 8;
+ }
+ if (input_num & uint64_t(0xf0)) {
+ input_num >>= 4;
+ last_bit |= 4;
+ }
+ if (input_num & uint64_t(0xc)) {
+ input_num >>= 2;
+ last_bit |= 2;
+ }
+ if (input_num & uint64_t(0x2)) { /* input_num >>= 1; */
+ last_bit |= 1;
+ }
+ return 63 - last_bit;
+}
+
+/* result might be undefined when input_num is zero */
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 int
+leading_zeroes(uint64_t input_num) {
+ assert(input_num > 0);
+ if (cpp20_and_in_constexpr()) {
+ return leading_zeroes_generic(input_num);
+ }
+#ifdef FASTFLOAT_VISUAL_STUDIO
+#if defined(_M_X64) || defined(_M_ARM64)
+ unsigned long leading_zero = 0;
+ // Search the mask data from most significant bit (MSB)
+ // to least significant bit (LSB) for a set bit (1).
+ _BitScanReverse64(&leading_zero, input_num);
+ return (int)(63 - leading_zero);
+#else
+ return leading_zeroes_generic(input_num);
+#endif
+#else
+ return __builtin_clzll(input_num);
+#endif
+}
+
+// slow emulation routine for 32-bit
+fastfloat_really_inline constexpr uint64_t emulu(uint32_t x, uint32_t y) {
+ return x * (uint64_t)y;
+}
+
+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t
+umul128_generic(uint64_t ab, uint64_t cd, uint64_t *hi) {
+ uint64_t ad = emulu((uint32_t)(ab >> 32), (uint32_t)cd);
+ uint64_t bd = emulu((uint32_t)ab, (uint32_t)cd);
+ uint64_t adbc = ad + emulu((uint32_t)ab, (uint32_t)(cd >> 32));
+ uint64_t adbc_carry = (uint64_t)(adbc < ad);
+ uint64_t lo = bd + (adbc << 32);
+ *hi = emulu((uint32_t)(ab >> 32), (uint32_t)(cd >> 32)) + (adbc >> 32) +
+ (adbc_carry << 32) + (uint64_t)(lo < bd);
+ return lo;
+}
+
+#ifdef FASTFLOAT_32BIT
+
+// slow emulation routine for 32-bit
+#if !defined(__MINGW64__)
+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t _umul128(uint64_t ab,
+ uint64_t cd,
+ uint64_t *hi) {
+ return umul128_generic(ab, cd, hi);
+}
+#endif // !__MINGW64__
+
+#endif // FASTFLOAT_32BIT
+
+// compute 64-bit a*b
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 value128
+full_multiplication(uint64_t a, uint64_t b) {
+ if (cpp20_and_in_constexpr()) {
+ value128 answer;
+ answer.low = umul128_generic(a, b, &answer.high);
+ return answer;
+ }
+ value128 answer;
+#if defined(_M_ARM64) && !defined(__MINGW32__)
+ // ARM64 has native support for 64-bit multiplications, no need to emulate
+ // But MinGW on ARM64 doesn't have native support for 64-bit multiplications
+ answer.high = __umulh(a, b);
+ answer.low = a * b;
+#elif defined(FASTFLOAT_32BIT) || \
+ (defined(_WIN64) && !defined(__clang__) && !defined(_M_ARM64))
+ answer.low = _umul128(a, b, &answer.high); // _umul128 not available on ARM64
+#elif defined(FASTFLOAT_64BIT) && defined(__SIZEOF_INT128__)
+ __uint128_t r = ((__uint128_t)a) * b;
+ answer.low = uint64_t(r);
+ answer.high = uint64_t(r >> 64);
+#else
+ answer.low = umul128_generic(a, b, &answer.high);
+#endif
+ return answer;
+}
+
+struct adjusted_mantissa {
+ uint64_t mantissa{0};
+ int32_t power2{0}; // a negative value indicates an invalid result
+ adjusted_mantissa() = default;
+ constexpr bool operator==(const adjusted_mantissa &o) const {
+ return mantissa == o.mantissa && power2 == o.power2;
+ }
+ constexpr bool operator!=(const adjusted_mantissa &o) const {
+ return mantissa != o.mantissa || power2 != o.power2;
+ }
+};
+
+// Bias so we can get the real exponent with an invalid adjusted_mantissa.
+constexpr static int32_t invalid_am_bias = -0x8000;
+
+// used for binary_format_lookup_tables<T>::max_mantissa
+constexpr uint64_t constant_55555 = 5 * 5 * 5 * 5 * 5;
+
+template <typename T, typename U = void> struct binary_format_lookup_tables;
+
+template <typename T> struct binary_format : binary_format_lookup_tables<T> {
+ using equiv_uint =
+ typename std::conditional<sizeof(T) == 4, uint32_t, uint64_t>::type;
+
+ static inline constexpr int mantissa_explicit_bits();
+ static inline constexpr int minimum_exponent();
+ static inline constexpr int infinite_power();
+ static inline constexpr int sign_index();
+ static inline constexpr int
+ min_exponent_fast_path(); // used when fegetround() == FE_TONEAREST
+ static inline constexpr int max_exponent_fast_path();
+ static inline constexpr int max_exponent_round_to_even();
+ static inline constexpr int min_exponent_round_to_even();
+ static inline constexpr uint64_t max_mantissa_fast_path(int64_t power);
+ static inline constexpr uint64_t
+ max_mantissa_fast_path(); // used when fegetround() == FE_TONEAREST
+ static inline constexpr int largest_power_of_ten();
+ static inline constexpr int smallest_power_of_ten();
+ static inline constexpr T exact_power_of_ten(int64_t power);
+ static inline constexpr size_t max_digits();
+ static inline constexpr equiv_uint exponent_mask();
+ static inline constexpr equiv_uint mantissa_mask();
+ static inline constexpr equiv_uint hidden_bit_mask();
+};
+
+template <typename U> struct binary_format_lookup_tables<double, U> {
+ static constexpr double powers_of_ten[] = {
+ 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11,
+ 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22};
+
+ // Largest integer value v so that (5**index * v) <= 1<<53.
+ // 0x20000000000000 == 1 << 53
+ static constexpr uint64_t max_mantissa[] = {
+ 0x20000000000000,
+ 0x20000000000000 / 5,
+ 0x20000000000000 / (5 * 5),
+ 0x20000000000000 / (5 * 5 * 5),
+ 0x20000000000000 / (5 * 5 * 5 * 5),
+ 0x20000000000000 / (constant_55555),
+ 0x20000000000000 / (constant_55555 * 5),
+ 0x20000000000000 / (constant_55555 * 5 * 5),
+ 0x20000000000000 / (constant_55555 * 5 * 5 * 5),
+ 0x20000000000000 / (constant_55555 * 5 * 5 * 5 * 5),
+ 0x20000000000000 / (constant_55555 * constant_55555),
+ 0x20000000000000 / (constant_55555 * constant_55555 * 5),
+ 0x20000000000000 / (constant_55555 * constant_55555 * 5 * 5),
+ 0x20000000000000 / (constant_55555 * constant_55555 * 5 * 5 * 5),
+ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555),
+ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5),
+ 0x20000000000000 /
+ (constant_55555 * constant_55555 * constant_55555 * 5 * 5),
+ 0x20000000000000 /
+ (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5),
+ 0x20000000000000 /
+ (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5 * 5),
+ 0x20000000000000 /
+ (constant_55555 * constant_55555 * constant_55555 * constant_55555),
+ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 *
+ constant_55555 * 5),
+ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 *
+ constant_55555 * 5 * 5),
+ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 *
+ constant_55555 * 5 * 5 * 5),
+ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 *
+ constant_55555 * 5 * 5 * 5 * 5)};
+};
+
+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE
+
+template <typename U>
+constexpr double binary_format_lookup_tables<double, U>::powers_of_ten[];
+
+template <typename U>
+constexpr uint64_t binary_format_lookup_tables<double, U>::max_mantissa[];
+
+#endif
+
+template <typename U> struct binary_format_lookup_tables<float, U> {
+ static constexpr float powers_of_ten[] = {1e0f, 1e1f, 1e2f, 1e3f, 1e4f, 1e5f,
+ 1e6f, 1e7f, 1e8f, 1e9f, 1e10f};
+
+ // Largest integer value v so that (5**index * v) <= 1<<24.
+ // 0x1000000 == 1<<24
+ static constexpr uint64_t max_mantissa[] = {
+ 0x1000000,
+ 0x1000000 / 5,
+ 0x1000000 / (5 * 5),
+ 0x1000000 / (5 * 5 * 5),
+ 0x1000000 / (5 * 5 * 5 * 5),
+ 0x1000000 / (constant_55555),
+ 0x1000000 / (constant_55555 * 5),
+ 0x1000000 / (constant_55555 * 5 * 5),
+ 0x1000000 / (constant_55555 * 5 * 5 * 5),
+ 0x1000000 / (constant_55555 * 5 * 5 * 5 * 5),
+ 0x1000000 / (constant_55555 * constant_55555),
+ 0x1000000 / (constant_55555 * constant_55555 * 5)};
+};
+
+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE
+
+template <typename U>
+constexpr float binary_format_lookup_tables<float, U>::powers_of_ten[];
+
+template <typename U>
+constexpr uint64_t binary_format_lookup_tables<float, U>::max_mantissa[];
+
+#endif
+
+template <>
+inline constexpr int binary_format<double>::min_exponent_fast_path() {
+#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
+ return 0;
+#else
+ return -22;
+#endif
+}
+
+template <>
+inline constexpr int binary_format<float>::min_exponent_fast_path() {
+#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
+ return 0;
+#else
+ return -10;
+#endif
+}
+
+template <>
+inline constexpr int binary_format<double>::mantissa_explicit_bits() {
+ return 52;
+}
+template <>
+inline constexpr int binary_format<float>::mantissa_explicit_bits() {
+ return 23;
+}
+
+template <>
+inline constexpr int binary_format<double>::max_exponent_round_to_even() {
+ return 23;
+}
+
+template <>
+inline constexpr int binary_format<float>::max_exponent_round_to_even() {
+ return 10;
+}
+
+template <>
+inline constexpr int binary_format<double>::min_exponent_round_to_even() {
+ return -4;
+}
+
+template <>
+inline constexpr int binary_format<float>::min_exponent_round_to_even() {
+ return -17;
+}
+
+template <> inline constexpr int binary_format<double>::minimum_exponent() {
+ return -1023;
+}
+template <> inline constexpr int binary_format<float>::minimum_exponent() {
+ return -127;
+}
+
+template <> inline constexpr int binary_format<double>::infinite_power() {
+ return 0x7FF;
+}
+template <> inline constexpr int binary_format<float>::infinite_power() {
+ return 0xFF;
+}
+
+template <> inline constexpr int binary_format<double>::sign_index() {
+ return 63;
+}
+template <> inline constexpr int binary_format<float>::sign_index() {
+ return 31;
+}
+
+template <>
+inline constexpr int binary_format<double>::max_exponent_fast_path() {
+ return 22;
+}
+template <>
+inline constexpr int binary_format<float>::max_exponent_fast_path() {
+ return 10;
+}
+
+template <>
+inline constexpr uint64_t binary_format<double>::max_mantissa_fast_path() {
+ return uint64_t(2) << mantissa_explicit_bits();
+}
+template <>
+inline constexpr uint64_t
+binary_format<double>::max_mantissa_fast_path(int64_t power) {
+ // caller is responsible to ensure that
+ // power >= 0 && power <= 22
+ //
+ // Work around clang bug https://godbolt.org/z/zedh7rrhc
+ return (void)max_mantissa[0], max_mantissa[power];
+}
+template <>
+inline constexpr uint64_t binary_format<float>::max_mantissa_fast_path() {
+ return uint64_t(2) << mantissa_explicit_bits();
+}
+template <>
+inline constexpr uint64_t
+binary_format<float>::max_mantissa_fast_path(int64_t power) {
+ // caller is responsible to ensure that
+ // power >= 0 && power <= 10
+ //
+ // Work around clang bug https://godbolt.org/z/zedh7rrhc
+ return (void)max_mantissa[0], max_mantissa[power];
+}
+
+template <>
+inline constexpr double
+binary_format<double>::exact_power_of_ten(int64_t power) {
+ // Work around clang bug https://godbolt.org/z/zedh7rrhc
+ return (void)powers_of_ten[0], powers_of_ten[power];
+}
+template <>
+inline constexpr float binary_format<float>::exact_power_of_ten(int64_t power) {
+ // Work around clang bug https://godbolt.org/z/zedh7rrhc
+ return (void)powers_of_ten[0], powers_of_ten[power];
+}
+
+template <> inline constexpr int binary_format<double>::largest_power_of_ten() {
+ return 308;
+}
+template <> inline constexpr int binary_format<float>::largest_power_of_ten() {
+ return 38;
+}
+
+template <>
+inline constexpr int binary_format<double>::smallest_power_of_ten() {
+ return -342;
+}
+template <> inline constexpr int binary_format<float>::smallest_power_of_ten() {
+ return -64;
+}
+
+template <> inline constexpr size_t binary_format<double>::max_digits() {
+ return 769;
+}
+template <> inline constexpr size_t binary_format<float>::max_digits() {
+ return 114;
+}
+
+template <>
+inline constexpr binary_format<float>::equiv_uint
+binary_format<float>::exponent_mask() {
+ return 0x7F800000;
+}
+template <>
+inline constexpr binary_format<double>::equiv_uint
+binary_format<double>::exponent_mask() {
+ return 0x7FF0000000000000;
+}
+
+template <>
+inline constexpr binary_format<float>::equiv_uint
+binary_format<float>::mantissa_mask() {
+ return 0x007FFFFF;
+}
+template <>
+inline constexpr binary_format<double>::equiv_uint
+binary_format<double>::mantissa_mask() {
+ return 0x000FFFFFFFFFFFFF;
+}
+
+template <>
+inline constexpr binary_format<float>::equiv_uint
+binary_format<float>::hidden_bit_mask() {
+ return 0x00800000;
+}
+template <>
+inline constexpr binary_format<double>::equiv_uint
+binary_format<double>::hidden_bit_mask() {
+ return 0x0010000000000000;
+}
+
+template <typename T>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
+to_float(bool negative, adjusted_mantissa am, T &value) {
+ using fastfloat_uint = typename binary_format<T>::equiv_uint;
+ fastfloat_uint word = (fastfloat_uint)am.mantissa;
+ word |= fastfloat_uint(am.power2)
+ << binary_format<T>::mantissa_explicit_bits();
+ word |= fastfloat_uint(negative) << binary_format<T>::sign_index();
+#if FASTFLOAT_HAS_BIT_CAST
+ value = std::bit_cast<T>(word);
+#else
+ ::memcpy(&value, &word, sizeof(T));
+#endif
+}
+
+#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default
+template <typename = void> struct space_lut {
+ static constexpr bool value[] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
+};
+
+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE
+
+template <typename T> constexpr bool space_lut<T>::value[];
+
+#endif
+
+inline constexpr bool is_space(uint8_t c) { return space_lut<>::value[c]; }
+#endif
+
+template <typename UC> static constexpr uint64_t int_cmp_zeros() {
+ static_assert((sizeof(UC) == 1) || (sizeof(UC) == 2) || (sizeof(UC) == 4),
+ "Unsupported character size");
+ return (sizeof(UC) == 1) ? 0x3030303030303030
+ : (sizeof(UC) == 2)
+ ? (uint64_t(UC('0')) << 48 | uint64_t(UC('0')) << 32 |
+ uint64_t(UC('0')) << 16 | UC('0'))
+ : (uint64_t(UC('0')) << 32 | UC('0'));
+}
+template <typename UC> static constexpr int int_cmp_len() {
+ return sizeof(uint64_t) / sizeof(UC);
+}
+template <typename UC> static constexpr UC const *str_const_nan() {
+ return nullptr;
+}
+template <> constexpr char const *str_const_nan<char>() { return "nan"; }
+template <> constexpr wchar_t const *str_const_nan<wchar_t>() { return L"nan"; }
+template <> constexpr char16_t const *str_const_nan<char16_t>() {
+ return u"nan";
+}
+template <> constexpr char32_t const *str_const_nan<char32_t>() {
+ return U"nan";
+}
+template <typename UC> static constexpr UC const *str_const_inf() {
+ return nullptr;
+}
+template <> constexpr char const *str_const_inf<char>() { return "infinity"; }
+template <> constexpr wchar_t const *str_const_inf<wchar_t>() {
+ return L"infinity";
+}
+template <> constexpr char16_t const *str_const_inf<char16_t>() {
+ return u"infinity";
+}
+template <> constexpr char32_t const *str_const_inf<char32_t>() {
+ return U"infinity";
+}
+
+template <typename = void> struct int_luts {
+ static constexpr uint8_t chdigit[] = {
+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+ 255, 255, 255, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 255, 255,
+ 255, 255, 255, 255, 255, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
+ 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
+ 35, 255, 255, 255, 255, 255, 255, 10, 11, 12, 13, 14, 15, 16, 17,
+ 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
+ 33, 34, 35, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+ 255};
+
+ static constexpr size_t maxdigits_u64[] = {
+ 64, 41, 32, 28, 25, 23, 22, 21, 20, 19, 18, 18, 17, 17, 16, 16, 16, 16,
+ 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13};
+
+ static constexpr uint64_t min_safe_u64[] = {
+ 9223372036854775808ull, 12157665459056928801ull, 4611686018427387904,
+ 7450580596923828125, 4738381338321616896, 3909821048582988049,
+ 9223372036854775808ull, 12157665459056928801ull, 10000000000000000000ull,
+ 5559917313492231481, 2218611106740436992, 8650415919381337933,
+ 2177953337809371136, 6568408355712890625, 1152921504606846976,
+ 2862423051509815793, 6746640616477458432, 15181127029874798299ull,
+ 1638400000000000000, 3243919932521508681, 6221821273427820544,
+ 11592836324538749809ull, 876488338465357824, 1490116119384765625,
+ 2481152873203736576, 4052555153018976267, 6502111422497947648,
+ 10260628712958602189ull, 15943230000000000000ull, 787662783788549761,
+ 1152921504606846976, 1667889514952984961, 2386420683693101056,
+ 3379220508056640625, 4738381338321616896};
+};
+
+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE
+
+template <typename T> constexpr uint8_t int_luts<T>::chdigit[];
+
+template <typename T> constexpr size_t int_luts<T>::maxdigits_u64[];
+
+template <typename T> constexpr uint64_t int_luts<T>::min_safe_u64[];
+
+#endif
+
+template <typename UC>
+fastfloat_really_inline constexpr uint8_t ch_to_digit(UC c) {
+ return int_luts<>::chdigit[static_cast<unsigned char>(c)];
+}
+
+fastfloat_really_inline constexpr size_t max_digits_u64(int base) {
+ return int_luts<>::maxdigits_u64[base - 2];
+}
+
+// If a u64 is exactly max_digits_u64() in length, this is
+// the value below which it has definitely overflowed.
+fastfloat_really_inline constexpr uint64_t min_safe_u64(int base) {
+ return int_luts<>::min_safe_u64[base - 2];
+}
+
+} // namespace fast_float
+
+#endif
+
+
+#ifndef FASTFLOAT_FAST_FLOAT_H
+#define FASTFLOAT_FAST_FLOAT_H
+
+
+namespace fast_float {
+/**
+ * This function parses the character sequence [first,last) for a number. It
+ * parses floating-point numbers expecting a locale-indepent format equivalent
+ * to what is used by std::strtod in the default ("C") locale. The resulting
+ * floating-point value is the closest floating-point values (using either float
+ * or double), using the "round to even" convention for values that would
+ * otherwise fall right in-between two values. That is, we provide exact parsing
+ * according to the IEEE standard.
+ *
+ * Given a successful parse, the pointer (`ptr`) in the returned value is set to
+ * point right after the parsed number, and the `value` referenced is set to the
+ * parsed value. In case of error, the returned `ec` contains a representative
+ * error, otherwise the default (`std::errc()`) value is stored.
+ *
+ * The implementation does not throw and does not allocate memory (e.g., with
+ * `new` or `malloc`).
+ *
+ * Like the C++17 standard, the `fast_float::from_chars` functions take an
+ * optional last argument of the type `fast_float::chars_format`. It is a bitset
+ * value: we check whether `fmt & fast_float::chars_format::fixed` and `fmt &
+ * fast_float::chars_format::scientific` are set to determine whether we allow
+ * the fixed point and scientific notation respectively. The default is
+ * `fast_float::chars_format::general` which allows both `fixed` and
+ * `scientific`.
+ */
+template <typename T, typename UC = char,
+ typename = FASTFLOAT_ENABLE_IF(is_supported_float_type<T>())>
+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
+from_chars(UC const *first, UC const *last, T &value,
+ chars_format fmt = chars_format::general) noexcept;
+
+/**
+ * Like from_chars, but accepts an `options` argument to govern number parsing.
+ */
+template <typename T, typename UC = char>
+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
+from_chars_advanced(UC const *first, UC const *last, T &value,
+ parse_options_t<UC> options) noexcept;
+/**
+ * from_chars for integer types.
+ */
+template <typename T, typename UC = char,
+ typename = FASTFLOAT_ENABLE_IF(!is_supported_float_type<T>())>
+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
+from_chars(UC const *first, UC const *last, T &value, int base = 10) noexcept;
+
+} // namespace fast_float
+#endif // FASTFLOAT_FAST_FLOAT_H
+
+#ifndef FASTFLOAT_ASCII_NUMBER_H
+#define FASTFLOAT_ASCII_NUMBER_H
+
+#include <cctype>
+#include <cstdint>
+#include <cstring>
+#include <iterator>
+#include <limits>
+#include <type_traits>
+
+
+#ifdef FASTFLOAT_SSE2
+#include <emmintrin.h>
+#endif
+
+#ifdef FASTFLOAT_NEON
+#include <arm_neon.h>
+#endif
+
+namespace fast_float {
+
+template <typename UC> fastfloat_really_inline constexpr bool has_simd_opt() {
+#ifdef FASTFLOAT_HAS_SIMD
+ return std::is_same<UC, char16_t>::value;
+#else
+ return false;
+#endif
+}
+
+// Next function can be micro-optimized, but compilers are entirely
+// able to optimize it well.
+template <typename UC>
+fastfloat_really_inline constexpr bool is_integer(UC c) noexcept {
+ return !(c > UC('9') || c < UC('0'));
+}
+
+fastfloat_really_inline constexpr uint64_t byteswap(uint64_t val) {
+ return (val & 0xFF00000000000000) >> 56 | (val & 0x00FF000000000000) >> 40 |
+ (val & 0x0000FF0000000000) >> 24 | (val & 0x000000FF00000000) >> 8 |
+ (val & 0x00000000FF000000) << 8 | (val & 0x0000000000FF0000) << 24 |
+ (val & 0x000000000000FF00) << 40 | (val & 0x00000000000000FF) << 56;
+}
+
+// Read 8 UC into a u64. Truncates UC if not char.
+template <typename UC>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
+read8_to_u64(const UC *chars) {
+ if (cpp20_and_in_constexpr() || !std::is_same<UC, char>::value) {
+ uint64_t val = 0;
+ for (int i = 0; i < 8; ++i) {
+ val |= uint64_t(uint8_t(*chars)) << (i * 8);
+ ++chars;
+ }
+ return val;
+ }
+ uint64_t val;
+ ::memcpy(&val, chars, sizeof(uint64_t));
+#if FASTFLOAT_IS_BIG_ENDIAN == 1
+ // Need to read as-if the number was in little-endian order.
+ val = byteswap(val);
+#endif
+ return val;
+}
+
+#ifdef FASTFLOAT_SSE2
+
+fastfloat_really_inline uint64_t simd_read8_to_u64(const __m128i data) {
+ FASTFLOAT_SIMD_DISABLE_WARNINGS
+ const __m128i packed = _mm_packus_epi16(data, data);
+#ifdef FASTFLOAT_64BIT
+ return uint64_t(_mm_cvtsi128_si64(packed));
+#else
+ uint64_t value;
+ // Visual Studio + older versions of GCC don't support _mm_storeu_si64
+ _mm_storel_epi64(reinterpret_cast<__m128i *>(&value), packed);
+ return value;
+#endif
+ FASTFLOAT_SIMD_RESTORE_WARNINGS
+}
+
+fastfloat_really_inline uint64_t simd_read8_to_u64(const char16_t *chars) {
+ FASTFLOAT_SIMD_DISABLE_WARNINGS
+ return simd_read8_to_u64(
+ _mm_loadu_si128(reinterpret_cast<const __m128i *>(chars)));
+ FASTFLOAT_SIMD_RESTORE_WARNINGS
+}
+
+#elif defined(FASTFLOAT_NEON)
+
+fastfloat_really_inline uint64_t simd_read8_to_u64(const uint16x8_t data) {
+ FASTFLOAT_SIMD_DISABLE_WARNINGS
+ uint8x8_t utf8_packed = vmovn_u16(data);
+ return vget_lane_u64(vreinterpret_u64_u8(utf8_packed), 0);
+ FASTFLOAT_SIMD_RESTORE_WARNINGS
+}
+
+fastfloat_really_inline uint64_t simd_read8_to_u64(const char16_t *chars) {
+ FASTFLOAT_SIMD_DISABLE_WARNINGS
+ return simd_read8_to_u64(
+ vld1q_u16(reinterpret_cast<const uint16_t *>(chars)));
+ FASTFLOAT_SIMD_RESTORE_WARNINGS
+}
+
+#endif // FASTFLOAT_SSE2
+
+// MSVC SFINAE is broken pre-VS2017
+#if defined(_MSC_VER) && _MSC_VER <= 1900
+template <typename UC>
+#else
+template <typename UC, FASTFLOAT_ENABLE_IF(!has_simd_opt<UC>()) = 0>
+#endif
+// dummy for compile
+uint64_t simd_read8_to_u64(UC const *) {
+ return 0;
+}
+
+// credit @aqrit
+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint32_t
+parse_eight_digits_unrolled(uint64_t val) {
+ const uint64_t mask = 0x000000FF000000FF;
+ const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32)
+ const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32)
+ val -= 0x3030303030303030;
+ val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8;
+ val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32;
+ return uint32_t(val);
+}
+
+// Call this if chars are definitely 8 digits.
+template <typename UC>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint32_t
+parse_eight_digits_unrolled(UC const *chars) noexcept {
+ if (cpp20_and_in_constexpr() || !has_simd_opt<UC>()) {
+ return parse_eight_digits_unrolled(read8_to_u64(chars)); // truncation okay
+ }
+ return parse_eight_digits_unrolled(simd_read8_to_u64(chars));
+}
+
+// credit @aqrit
+fastfloat_really_inline constexpr bool
+is_made_of_eight_digits_fast(uint64_t val) noexcept {
+ return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) &
+ 0x8080808080808080));
+}
+
+#ifdef FASTFLOAT_HAS_SIMD
+
+// Call this if chars might not be 8 digits.
+// Using this style (instead of is_made_of_eight_digits_fast() then
+// parse_eight_digits_unrolled()) ensures we don't load SIMD registers twice.
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
+simd_parse_if_eight_digits_unrolled(const char16_t *chars,
+ uint64_t &i) noexcept {
+ if (cpp20_and_in_constexpr()) {
+ return false;
+ }
+#ifdef FASTFLOAT_SSE2
+ FASTFLOAT_SIMD_DISABLE_WARNINGS
+ const __m128i data =
+ _mm_loadu_si128(reinterpret_cast<const __m128i *>(chars));
+
+ // (x - '0') <= 9
+ // http://0x80.pl/articles/simd-parsing-int-sequences.html
+ const __m128i t0 = _mm_add_epi16(data, _mm_set1_epi16(32720));
+ const __m128i t1 = _mm_cmpgt_epi16(t0, _mm_set1_epi16(-32759));
+
+ if (_mm_movemask_epi8(t1) == 0) {
+ i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data));
+ return true;
+ } else
+ return false;
+ FASTFLOAT_SIMD_RESTORE_WARNINGS
+#elif defined(FASTFLOAT_NEON)
+ FASTFLOAT_SIMD_DISABLE_WARNINGS
+ const uint16x8_t data = vld1q_u16(reinterpret_cast<const uint16_t *>(chars));
+
+ // (x - '0') <= 9
+ // http://0x80.pl/articles/simd-parsing-int-sequences.html
+ const uint16x8_t t0 = vsubq_u16(data, vmovq_n_u16('0'));
+ const uint16x8_t mask = vcltq_u16(t0, vmovq_n_u16('9' - '0' + 1));
+
+ if (vminvq_u16(mask) == 0xFFFF) {
+ i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data));
+ return true;
+ } else
+ return false;
+ FASTFLOAT_SIMD_RESTORE_WARNINGS
+#else
+ (void)chars;
+ (void)i;
+ return false;
+#endif // FASTFLOAT_SSE2
+}
+
+#endif // FASTFLOAT_HAS_SIMD
+
+// MSVC SFINAE is broken pre-VS2017
+#if defined(_MSC_VER) && _MSC_VER <= 1900
+template <typename UC>
+#else
+template <typename UC, FASTFLOAT_ENABLE_IF(!has_simd_opt<UC>()) = 0>
+#endif
+// dummy for compile
+bool simd_parse_if_eight_digits_unrolled(UC const *, uint64_t &) {
+ return 0;
+}
+
+template <typename UC, FASTFLOAT_ENABLE_IF(!std::is_same<UC, char>::value) = 0>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
+loop_parse_if_eight_digits(const UC *&p, const UC *const pend, uint64_t &i) {
+ if (!has_simd_opt<UC>()) {
+ return;
+ }
+ while ((std::distance(p, pend) >= 8) &&
+ simd_parse_if_eight_digits_unrolled(
+ p, i)) { // in rare cases, this will overflow, but that's ok
+ p += 8;
+ }
+}
+
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
+loop_parse_if_eight_digits(const char *&p, const char *const pend,
+ uint64_t &i) {
+ // optimizes better than parse_if_eight_digits_unrolled() for UC = char.
+ while ((std::distance(p, pend) >= 8) &&
+ is_made_of_eight_digits_fast(read8_to_u64(p))) {
+ i = i * 100000000 +
+ parse_eight_digits_unrolled(read8_to_u64(
+ p)); // in rare cases, this will overflow, but that's ok
+ p += 8;
+ }
+}
+
+enum class parse_error {
+ no_error,
+ // [JSON-only] The minus sign must be followed by an integer.
+ missing_integer_after_sign,
+ // A sign must be followed by an integer or dot.
+ missing_integer_or_dot_after_sign,
+ // [JSON-only] The integer part must not have leading zeros.
+ leading_zeros_in_integer_part,
+ // [JSON-only] The integer part must have at least one digit.
+ no_digits_in_integer_part,
+ // [JSON-only] If there is a decimal point, there must be digits in the
+ // fractional part.
+ no_digits_in_fractional_part,
+ // The mantissa must have at least one digit.
+ no_digits_in_mantissa,
+ // Scientific notation requires an exponential part.
+ missing_exponential_part,
+};
+
+template <typename UC> struct parsed_number_string_t {
+ int64_t exponent{0};
+ uint64_t mantissa{0};
+ UC const *lastmatch{nullptr};
+ bool negative{false};
+ bool valid{false};
+ bool too_many_digits{false};
+ // contains the range of the significant digits
+ span<const UC> integer{}; // non-nullable
+ span<const UC> fraction{}; // nullable
+ parse_error error{parse_error::no_error};
+};
+
+using byte_span = span<const char>;
+using parsed_number_string = parsed_number_string_t<char>;
+
+template <typename UC>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 parsed_number_string_t<UC>
+report_parse_error(UC const *p, parse_error error) {
+ parsed_number_string_t<UC> answer;
+ answer.valid = false;
+ answer.lastmatch = p;
+ answer.error = error;
+ return answer;
+}
+
+// Assuming that you use no more than 19 digits, this will
+// parse an ASCII string.
+template <typename UC>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 parsed_number_string_t<UC>
+parse_number_string(UC const *p, UC const *pend,
+ parse_options_t<UC> options) noexcept {
+ chars_format const fmt = options.format;
+ UC const decimal_point = options.decimal_point;
+
+ parsed_number_string_t<UC> answer;
+ answer.valid = false;
+ answer.too_many_digits = false;
+ answer.negative = (*p == UC('-'));
+#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default
+ if ((*p == UC('-')) || (!(fmt & FASTFLOAT_JSONFMT) && *p == UC('+'))) {
+#else
+ if (*p == UC('-')) { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here
+#endif
+ ++p;
+ if (p == pend) {
+ return report_parse_error<UC>(
+ p, parse_error::missing_integer_or_dot_after_sign);
+ }
+ if (fmt & FASTFLOAT_JSONFMT) {
+ if (!is_integer(*p)) { // a sign must be followed by an integer
+ return report_parse_error<UC>(p,
+ parse_error::missing_integer_after_sign);
+ }
+ } else {
+ if (!is_integer(*p) &&
+ (*p !=
+ decimal_point)) { // a sign must be followed by an integer or the dot
+ return report_parse_error<UC>(
+ p, parse_error::missing_integer_or_dot_after_sign);
+ }
+ }
+ }
+ UC const *const start_digits = p;
+
+ uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad)
+
+ while ((p != pend) && is_integer(*p)) {
+ // a multiplication by 10 is cheaper than an arbitrary integer
+ // multiplication
+ i = 10 * i +
+ uint64_t(*p -
+ UC('0')); // might overflow, we will handle the overflow later
+ ++p;
+ }
+ UC const *const end_of_integer_part = p;
+ int64_t digit_count = int64_t(end_of_integer_part - start_digits);
+ answer.integer = span<const UC>(start_digits, size_t(digit_count));
+ if (fmt & FASTFLOAT_JSONFMT) {
+ // at least 1 digit in integer part, without leading zeros
+ if (digit_count == 0) {
+ return report_parse_error<UC>(p, parse_error::no_digits_in_integer_part);
+ }
+ if ((start_digits[0] == UC('0') && digit_count > 1)) {
+ return report_parse_error<UC>(start_digits,
+ parse_error::leading_zeros_in_integer_part);
+ }
+ }
+
+ int64_t exponent = 0;
+ const bool has_decimal_point = (p != pend) && (*p == decimal_point);
+ if (has_decimal_point) {
+ ++p;
+ UC const *before = p;
+ // can occur at most twice without overflowing, but let it occur more, since
+ // for integers with many digits, digit parsing is the primary bottleneck.
+ loop_parse_if_eight_digits(p, pend, i);
+
+ while ((p != pend) && is_integer(*p)) {
+ uint8_t digit = uint8_t(*p - UC('0'));
+ ++p;
+ i = i * 10 + digit; // in rare cases, this will overflow, but that's ok
+ }
+ exponent = before - p;
+ answer.fraction = span<const UC>(before, size_t(p - before));
+ digit_count -= exponent;
+ }
+ if (fmt & FASTFLOAT_JSONFMT) {
+ // at least 1 digit in fractional part
+ if (has_decimal_point && exponent == 0) {
+ return report_parse_error<UC>(p,
+ parse_error::no_digits_in_fractional_part);
+ }
+ } else if (digit_count ==
+ 0) { // we must have encountered at least one integer!
+ return report_parse_error<UC>(p, parse_error::no_digits_in_mantissa);
+ }
+ int64_t exp_number = 0; // explicit exponential part
+ if (((fmt & chars_format::scientific) && (p != pend) &&
+ ((UC('e') == *p) || (UC('E') == *p))) ||
+ ((fmt & FASTFLOAT_FORTRANFMT) && (p != pend) &&
+ ((UC('+') == *p) || (UC('-') == *p) || (UC('d') == *p) ||
+ (UC('D') == *p)))) {
+ UC const *location_of_e = p;
+ if ((UC('e') == *p) || (UC('E') == *p) || (UC('d') == *p) ||
+ (UC('D') == *p)) {
+ ++p;
+ }
+ bool neg_exp = false;
+ if ((p != pend) && (UC('-') == *p)) {
+ neg_exp = true;
+ ++p;
+ } else if ((p != pend) &&
+ (UC('+') ==
+ *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1)
+ ++p;
+ }
+ if ((p == pend) || !is_integer(*p)) {
+ if (!(fmt & chars_format::fixed)) {
+ // The exponential part is invalid for scientific notation, so it must
+ // be a trailing token for fixed notation. However, fixed notation is
+ // disabled, so report a scientific notation error.
+ return report_parse_error<UC>(p, parse_error::missing_exponential_part);
+ }
+ // Otherwise, we will be ignoring the 'e'.
+ p = location_of_e;
+ } else {
+ while ((p != pend) && is_integer(*p)) {
+ uint8_t digit = uint8_t(*p - UC('0'));
+ if (exp_number < 0x10000000) {
+ exp_number = 10 * exp_number + digit;
+ }
+ ++p;
+ }
+ if (neg_exp) {
+ exp_number = -exp_number;
+ }
+ exponent += exp_number;
+ }
+ } else {
+ // If it scientific and not fixed, we have to bail out.
+ if ((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) {
+ return report_parse_error<UC>(p, parse_error::missing_exponential_part);
+ }
+ }
+ answer.lastmatch = p;
+ answer.valid = true;
+
+ // If we frequently had to deal with long strings of digits,
+ // we could extend our code by using a 128-bit integer instead
+ // of a 64-bit integer. However, this is uncommon.
+ //
+ // We can deal with up to 19 digits.
+ if (digit_count > 19) { // this is uncommon
+ // It is possible that the integer had an overflow.
+ // We have to handle the case where we have 0.0000somenumber.
+ // We need to be mindful of the case where we only have zeroes...
+ // E.g., 0.000000000...000.
+ UC const *start = start_digits;
+ while ((start != pend) && (*start == UC('0') || *start == decimal_point)) {
+ if (*start == UC('0')) {
+ digit_count--;
+ }
+ start++;
+ }
+
+ if (digit_count > 19) {
+ answer.too_many_digits = true;
+ // Let us start again, this time, avoiding overflows.
+ // We don't need to check if is_integer, since we use the
+ // pre-tokenized spans from above.
+ i = 0;
+ p = answer.integer.ptr;
+ UC const *int_end = p + answer.integer.len();
+ const uint64_t minimal_nineteen_digit_integer{1000000000000000000};
+ while ((i < minimal_nineteen_digit_integer) && (p != int_end)) {
+ i = i * 10 + uint64_t(*p - UC('0'));
+ ++p;
+ }
+ if (i >= minimal_nineteen_digit_integer) { // We have a big integers
+ exponent = end_of_integer_part - p + exp_number;
+ } else { // We have a value with a fractional component.
+ p = answer.fraction.ptr;
+ UC const *frac_end = p + answer.fraction.len();
+ while ((i < minimal_nineteen_digit_integer) && (p != frac_end)) {
+ i = i * 10 + uint64_t(*p - UC('0'));
+ ++p;
+ }
+ exponent = answer.fraction.ptr - p + exp_number;
+ }
+ // We have now corrected both exponent and i, to a truncated value
+ }
+ }
+ answer.exponent = exponent;
+ answer.mantissa = i;
+ return answer;
+}
+
+template <typename T, typename UC>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
+parse_int_string(UC const *p, UC const *pend, T &value, int base) {
+ from_chars_result_t<UC> answer;
+
+ UC const *const first = p;
+
+ bool negative = (*p == UC('-'));
+ if (!std::is_signed<T>::value && negative) {
+ answer.ec = std::errc::invalid_argument;
+ answer.ptr = first;
+ return answer;
+ }
+#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default
+ if ((*p == UC('-')) || (*p == UC('+'))) {
+#else
+ if (*p == UC('-')) {
+#endif
+ ++p;
+ }
+
+ UC const *const start_num = p;
+
+ while (p != pend && *p == UC('0')) {
+ ++p;
+ }
+
+ const bool has_leading_zeros = p > start_num;
+
+ UC const *const start_digits = p;
+
+ uint64_t i = 0;
+ if (base == 10) {
+ loop_parse_if_eight_digits(p, pend, i); // use SIMD if possible
+ }
+ while (p != pend) {
+ uint8_t digit = ch_to_digit(*p);
+ if (digit >= base) {
+ break;
+ }
+ i = uint64_t(base) * i + digit; // might overflow, check this later
+ p++;
+ }
+
+ size_t digit_count = size_t(p - start_digits);
+
+ if (digit_count == 0) {
+ if (has_leading_zeros) {
+ value = 0;
+ answer.ec = std::errc();
+ answer.ptr = p;
+ } else {
+ answer.ec = std::errc::invalid_argument;
+ answer.ptr = first;
+ }
+ return answer;
+ }
+
+ answer.ptr = p;
+
+ // check u64 overflow
+ size_t max_digits = max_digits_u64(base);
+ if (digit_count > max_digits) {
+ answer.ec = std::errc::result_out_of_range;
+ return answer;
+ }
+ // this check can be eliminated for all other types, but they will all require
+ // a max_digits(base) equivalent
+ if (digit_count == max_digits && i < min_safe_u64(base)) {
+ answer.ec = std::errc::result_out_of_range;
+ return answer;
+ }
+
+ // check other types overflow
+ if (!std::is_same<T, uint64_t>::value) {
+ if (i > uint64_t(std::numeric_limits<T>::max()) + uint64_t(negative)) {
+ answer.ec = std::errc::result_out_of_range;
+ return answer;
+ }
+ }
+
+ if (negative) {
+#ifdef FASTFLOAT_VISUAL_STUDIO
+#pragma warning(push)
+#pragma warning(disable : 4146)
+#endif
+ // this weird workaround is required because:
+ // - converting unsigned to signed when its value is greater than signed max
+ // is UB pre-C++23.
+ // - reinterpret_casting (~i + 1) would work, but it is not constexpr
+ // this is always optimized into a neg instruction (note: T is an integer
+ // type)
+ value = T(-std::numeric_limits<T>::max() -
+ T(i - uint64_t(std::numeric_limits<T>::max())));
+#ifdef FASTFLOAT_VISUAL_STUDIO
+#pragma warning(pop)
+#endif
+ } else {
+ value = T(i);
+ }
+
+ answer.ec = std::errc();
+ return answer;
+}
+
+} // namespace fast_float
+
+#endif
+
+#ifndef FASTFLOAT_FAST_TABLE_H
+#define FASTFLOAT_FAST_TABLE_H
+
+#include <cstdint>
+
+namespace fast_float {
+
+/**
+ * When mapping numbers from decimal to binary,
+ * we go from w * 10^q to m * 2^p but we have
+ * 10^q = 5^q * 2^q, so effectively
+ * we are trying to match
+ * w * 2^q * 5^q to m * 2^p. Thus the powers of two
+ * are not a concern since they can be represented
+ * exactly using the binary notation, only the powers of five
+ * affect the binary significand.
+ */
+
+/**
+ * The smallest non-zero float (binary64) is 2^-1074.
+ * We take as input numbers of the form w x 10^q where w < 2^64.
+ * We have that w * 10^-343 < 2^(64-344) 5^-343 < 2^-1076.
+ * However, we have that
+ * (2^64-1) * 10^-342 = (2^64-1) * 2^-342 * 5^-342 > 2^-1074.
+ * Thus it is possible for a number of the form w * 10^-342 where
+ * w is a 64-bit value to be a non-zero floating-point number.
+ *********
+ * Any number of form w * 10^309 where w>= 1 is going to be
+ * infinite in binary64 so we never need to worry about powers
+ * of 5 greater than 308.
+ */
+template <class unused = void> struct powers_template {
+
+ constexpr static int smallest_power_of_five =
+ binary_format<double>::smallest_power_of_ten();
+ constexpr static int largest_power_of_five =
+ binary_format<double>::largest_power_of_ten();
+ constexpr static int number_of_entries =
+ 2 * (largest_power_of_five - smallest_power_of_five + 1);
+ // Powers of five from 5^-342 all the way to 5^308 rounded toward one.
+ constexpr static uint64_t power_of_five_128[number_of_entries] = {
+ 0xeef453d6923bd65a, 0x113faa2906a13b3f,
+ 0x9558b4661b6565f8, 0x4ac7ca59a424c507,
+ 0xbaaee17fa23ebf76, 0x5d79bcf00d2df649,
+ 0xe95a99df8ace6f53, 0xf4d82c2c107973dc,
+ 0x91d8a02bb6c10594, 0x79071b9b8a4be869,
+ 0xb64ec836a47146f9, 0x9748e2826cdee284,
+ 0xe3e27a444d8d98b7, 0xfd1b1b2308169b25,
+ 0x8e6d8c6ab0787f72, 0xfe30f0f5e50e20f7,
+ 0xb208ef855c969f4f, 0xbdbd2d335e51a935,
+ 0xde8b2b66b3bc4723, 0xad2c788035e61382,
+ 0x8b16fb203055ac76, 0x4c3bcb5021afcc31,
+ 0xaddcb9e83c6b1793, 0xdf4abe242a1bbf3d,
+ 0xd953e8624b85dd78, 0xd71d6dad34a2af0d,
+ 0x87d4713d6f33aa6b, 0x8672648c40e5ad68,
+ 0xa9c98d8ccb009506, 0x680efdaf511f18c2,
+ 0xd43bf0effdc0ba48, 0x212bd1b2566def2,
+ 0x84a57695fe98746d, 0x14bb630f7604b57,
+ 0xa5ced43b7e3e9188, 0x419ea3bd35385e2d,
+ 0xcf42894a5dce35ea, 0x52064cac828675b9,
+ 0x818995ce7aa0e1b2, 0x7343efebd1940993,
+ 0xa1ebfb4219491a1f, 0x1014ebe6c5f90bf8,
+ 0xca66fa129f9b60a6, 0xd41a26e077774ef6,
+ 0xfd00b897478238d0, 0x8920b098955522b4,
+ 0x9e20735e8cb16382, 0x55b46e5f5d5535b0,
+ 0xc5a890362fddbc62, 0xeb2189f734aa831d,
+ 0xf712b443bbd52b7b, 0xa5e9ec7501d523e4,
+ 0x9a6bb0aa55653b2d, 0x47b233c92125366e,
+ 0xc1069cd4eabe89f8, 0x999ec0bb696e840a,
+ 0xf148440a256e2c76, 0xc00670ea43ca250d,
+ 0x96cd2a865764dbca, 0x380406926a5e5728,
+ 0xbc807527ed3e12bc, 0xc605083704f5ecf2,
+ 0xeba09271e88d976b, 0xf7864a44c633682e,
+ 0x93445b8731587ea3, 0x7ab3ee6afbe0211d,
+ 0xb8157268fdae9e4c, 0x5960ea05bad82964,
+ 0xe61acf033d1a45df, 0x6fb92487298e33bd,
+ 0x8fd0c16206306bab, 0xa5d3b6d479f8e056,
+ 0xb3c4f1ba87bc8696, 0x8f48a4899877186c,
+ 0xe0b62e2929aba83c, 0x331acdabfe94de87,
+ 0x8c71dcd9ba0b4925, 0x9ff0c08b7f1d0b14,
+ 0xaf8e5410288e1b6f, 0x7ecf0ae5ee44dd9,
+ 0xdb71e91432b1a24a, 0xc9e82cd9f69d6150,
+ 0x892731ac9faf056e, 0xbe311c083a225cd2,
+ 0xab70fe17c79ac6ca, 0x6dbd630a48aaf406,
+ 0xd64d3d9db981787d, 0x92cbbccdad5b108,
+ 0x85f0468293f0eb4e, 0x25bbf56008c58ea5,
+ 0xa76c582338ed2621, 0xaf2af2b80af6f24e,
+ 0xd1476e2c07286faa, 0x1af5af660db4aee1,
+ 0x82cca4db847945ca, 0x50d98d9fc890ed4d,
+ 0xa37fce126597973c, 0xe50ff107bab528a0,
+ 0xcc5fc196fefd7d0c, 0x1e53ed49a96272c8,
+ 0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7a,
+ 0x9faacf3df73609b1, 0x77b191618c54e9ac,
+ 0xc795830d75038c1d, 0xd59df5b9ef6a2417,
+ 0xf97ae3d0d2446f25, 0x4b0573286b44ad1d,
+ 0x9becce62836ac577, 0x4ee367f9430aec32,
+ 0xc2e801fb244576d5, 0x229c41f793cda73f,
+ 0xf3a20279ed56d48a, 0x6b43527578c1110f,
+ 0x9845418c345644d6, 0x830a13896b78aaa9,
+ 0xbe5691ef416bd60c, 0x23cc986bc656d553,
+ 0xedec366b11c6cb8f, 0x2cbfbe86b7ec8aa8,
+ 0x94b3a202eb1c3f39, 0x7bf7d71432f3d6a9,
+ 0xb9e08a83a5e34f07, 0xdaf5ccd93fb0cc53,
+ 0xe858ad248f5c22c9, 0xd1b3400f8f9cff68,
+ 0x91376c36d99995be, 0x23100809b9c21fa1,
+ 0xb58547448ffffb2d, 0xabd40a0c2832a78a,
+ 0xe2e69915b3fff9f9, 0x16c90c8f323f516c,
+ 0x8dd01fad907ffc3b, 0xae3da7d97f6792e3,
+ 0xb1442798f49ffb4a, 0x99cd11cfdf41779c,
+ 0xdd95317f31c7fa1d, 0x40405643d711d583,
+ 0x8a7d3eef7f1cfc52, 0x482835ea666b2572,
+ 0xad1c8eab5ee43b66, 0xda3243650005eecf,
+ 0xd863b256369d4a40, 0x90bed43e40076a82,
+ 0x873e4f75e2224e68, 0x5a7744a6e804a291,
+ 0xa90de3535aaae202, 0x711515d0a205cb36,
+ 0xd3515c2831559a83, 0xd5a5b44ca873e03,
+ 0x8412d9991ed58091, 0xe858790afe9486c2,
+ 0xa5178fff668ae0b6, 0x626e974dbe39a872,
+ 0xce5d73ff402d98e3, 0xfb0a3d212dc8128f,
+ 0x80fa687f881c7f8e, 0x7ce66634bc9d0b99,
+ 0xa139029f6a239f72, 0x1c1fffc1ebc44e80,
+ 0xc987434744ac874e, 0xa327ffb266b56220,
+ 0xfbe9141915d7a922, 0x4bf1ff9f0062baa8,
+ 0x9d71ac8fada6c9b5, 0x6f773fc3603db4a9,
+ 0xc4ce17b399107c22, 0xcb550fb4384d21d3,
+ 0xf6019da07f549b2b, 0x7e2a53a146606a48,
+ 0x99c102844f94e0fb, 0x2eda7444cbfc426d,
+ 0xc0314325637a1939, 0xfa911155fefb5308,
+ 0xf03d93eebc589f88, 0x793555ab7eba27ca,
+ 0x96267c7535b763b5, 0x4bc1558b2f3458de,
+ 0xbbb01b9283253ca2, 0x9eb1aaedfb016f16,
+ 0xea9c227723ee8bcb, 0x465e15a979c1cadc,
+ 0x92a1958a7675175f, 0xbfacd89ec191ec9,
+ 0xb749faed14125d36, 0xcef980ec671f667b,
+ 0xe51c79a85916f484, 0x82b7e12780e7401a,
+ 0x8f31cc0937ae58d2, 0xd1b2ecb8b0908810,
+ 0xb2fe3f0b8599ef07, 0x861fa7e6dcb4aa15,
+ 0xdfbdcece67006ac9, 0x67a791e093e1d49a,
+ 0x8bd6a141006042bd, 0xe0c8bb2c5c6d24e0,
+ 0xaecc49914078536d, 0x58fae9f773886e18,
+ 0xda7f5bf590966848, 0xaf39a475506a899e,
+ 0x888f99797a5e012d, 0x6d8406c952429603,
+ 0xaab37fd7d8f58178, 0xc8e5087ba6d33b83,
+ 0xd5605fcdcf32e1d6, 0xfb1e4a9a90880a64,
+ 0x855c3be0a17fcd26, 0x5cf2eea09a55067f,
+ 0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481e,
+ 0xd0601d8efc57b08b, 0xf13b94daf124da26,
+ 0x823c12795db6ce57, 0x76c53d08d6b70858,
+ 0xa2cb1717b52481ed, 0x54768c4b0c64ca6e,
+ 0xcb7ddcdda26da268, 0xa9942f5dcf7dfd09,
+ 0xfe5d54150b090b02, 0xd3f93b35435d7c4c,
+ 0x9efa548d26e5a6e1, 0xc47bc5014a1a6daf,
+ 0xc6b8e9b0709f109a, 0x359ab6419ca1091b,
+ 0xf867241c8cc6d4c0, 0xc30163d203c94b62,
+ 0x9b407691d7fc44f8, 0x79e0de63425dcf1d,
+ 0xc21094364dfb5636, 0x985915fc12f542e4,
+ 0xf294b943e17a2bc4, 0x3e6f5b7b17b2939d,
+ 0x979cf3ca6cec5b5a, 0xa705992ceecf9c42,
+ 0xbd8430bd08277231, 0x50c6ff782a838353,
+ 0xece53cec4a314ebd, 0xa4f8bf5635246428,
+ 0x940f4613ae5ed136, 0x871b7795e136be99,
+ 0xb913179899f68584, 0x28e2557b59846e3f,
+ 0xe757dd7ec07426e5, 0x331aeada2fe589cf,
+ 0x9096ea6f3848984f, 0x3ff0d2c85def7621,
+ 0xb4bca50b065abe63, 0xfed077a756b53a9,
+ 0xe1ebce4dc7f16dfb, 0xd3e8495912c62894,
+ 0x8d3360f09cf6e4bd, 0x64712dd7abbbd95c,
+ 0xb080392cc4349dec, 0xbd8d794d96aacfb3,
+ 0xdca04777f541c567, 0xecf0d7a0fc5583a0,
+ 0x89e42caaf9491b60, 0xf41686c49db57244,
+ 0xac5d37d5b79b6239, 0x311c2875c522ced5,
+ 0xd77485cb25823ac7, 0x7d633293366b828b,
+ 0x86a8d39ef77164bc, 0xae5dff9c02033197,
+ 0xa8530886b54dbdeb, 0xd9f57f830283fdfc,
+ 0xd267caa862a12d66, 0xd072df63c324fd7b,
+ 0x8380dea93da4bc60, 0x4247cb9e59f71e6d,
+ 0xa46116538d0deb78, 0x52d9be85f074e608,
+ 0xcd795be870516656, 0x67902e276c921f8b,
+ 0x806bd9714632dff6, 0xba1cd8a3db53b6,
+ 0xa086cfcd97bf97f3, 0x80e8a40eccd228a4,
+ 0xc8a883c0fdaf7df0, 0x6122cd128006b2cd,
+ 0xfad2a4b13d1b5d6c, 0x796b805720085f81,
+ 0x9cc3a6eec6311a63, 0xcbe3303674053bb0,
+ 0xc3f490aa77bd60fc, 0xbedbfc4411068a9c,
+ 0xf4f1b4d515acb93b, 0xee92fb5515482d44,
+ 0x991711052d8bf3c5, 0x751bdd152d4d1c4a,
+ 0xbf5cd54678eef0b6, 0xd262d45a78a0635d,
+ 0xef340a98172aace4, 0x86fb897116c87c34,
+ 0x9580869f0e7aac0e, 0xd45d35e6ae3d4da0,
+ 0xbae0a846d2195712, 0x8974836059cca109,
+ 0xe998d258869facd7, 0x2bd1a438703fc94b,
+ 0x91ff83775423cc06, 0x7b6306a34627ddcf,
+ 0xb67f6455292cbf08, 0x1a3bc84c17b1d542,
+ 0xe41f3d6a7377eeca, 0x20caba5f1d9e4a93,
+ 0x8e938662882af53e, 0x547eb47b7282ee9c,
+ 0xb23867fb2a35b28d, 0xe99e619a4f23aa43,
+ 0xdec681f9f4c31f31, 0x6405fa00e2ec94d4,
+ 0x8b3c113c38f9f37e, 0xde83bc408dd3dd04,
+ 0xae0b158b4738705e, 0x9624ab50b148d445,
+ 0xd98ddaee19068c76, 0x3badd624dd9b0957,
+ 0x87f8a8d4cfa417c9, 0xe54ca5d70a80e5d6,
+ 0xa9f6d30a038d1dbc, 0x5e9fcf4ccd211f4c,
+ 0xd47487cc8470652b, 0x7647c3200069671f,
+ 0x84c8d4dfd2c63f3b, 0x29ecd9f40041e073,
+ 0xa5fb0a17c777cf09, 0xf468107100525890,
+ 0xcf79cc9db955c2cc, 0x7182148d4066eeb4,
+ 0x81ac1fe293d599bf, 0xc6f14cd848405530,
+ 0xa21727db38cb002f, 0xb8ada00e5a506a7c,
+ 0xca9cf1d206fdc03b, 0xa6d90811f0e4851c,
+ 0xfd442e4688bd304a, 0x908f4a166d1da663,
+ 0x9e4a9cec15763e2e, 0x9a598e4e043287fe,
+ 0xc5dd44271ad3cdba, 0x40eff1e1853f29fd,
+ 0xf7549530e188c128, 0xd12bee59e68ef47c,
+ 0x9a94dd3e8cf578b9, 0x82bb74f8301958ce,
+ 0xc13a148e3032d6e7, 0xe36a52363c1faf01,
+ 0xf18899b1bc3f8ca1, 0xdc44e6c3cb279ac1,
+ 0x96f5600f15a7b7e5, 0x29ab103a5ef8c0b9,
+ 0xbcb2b812db11a5de, 0x7415d448f6b6f0e7,
+ 0xebdf661791d60f56, 0x111b495b3464ad21,
+ 0x936b9fcebb25c995, 0xcab10dd900beec34,
+ 0xb84687c269ef3bfb, 0x3d5d514f40eea742,
+ 0xe65829b3046b0afa, 0xcb4a5a3112a5112,
+ 0x8ff71a0fe2c2e6dc, 0x47f0e785eaba72ab,
+ 0xb3f4e093db73a093, 0x59ed216765690f56,
+ 0xe0f218b8d25088b8, 0x306869c13ec3532c,
+ 0x8c974f7383725573, 0x1e414218c73a13fb,
+ 0xafbd2350644eeacf, 0xe5d1929ef90898fa,
+ 0xdbac6c247d62a583, 0xdf45f746b74abf39,
+ 0x894bc396ce5da772, 0x6b8bba8c328eb783,
+ 0xab9eb47c81f5114f, 0x66ea92f3f326564,
+ 0xd686619ba27255a2, 0xc80a537b0efefebd,
+ 0x8613fd0145877585, 0xbd06742ce95f5f36,
+ 0xa798fc4196e952e7, 0x2c48113823b73704,
+ 0xd17f3b51fca3a7a0, 0xf75a15862ca504c5,
+ 0x82ef85133de648c4, 0x9a984d73dbe722fb,
+ 0xa3ab66580d5fdaf5, 0xc13e60d0d2e0ebba,
+ 0xcc963fee10b7d1b3, 0x318df905079926a8,
+ 0xffbbcfe994e5c61f, 0xfdf17746497f7052,
+ 0x9fd561f1fd0f9bd3, 0xfeb6ea8bedefa633,
+ 0xc7caba6e7c5382c8, 0xfe64a52ee96b8fc0,
+ 0xf9bd690a1b68637b, 0x3dfdce7aa3c673b0,
+ 0x9c1661a651213e2d, 0x6bea10ca65c084e,
+ 0xc31bfa0fe5698db8, 0x486e494fcff30a62,
+ 0xf3e2f893dec3f126, 0x5a89dba3c3efccfa,
+ 0x986ddb5c6b3a76b7, 0xf89629465a75e01c,
+ 0xbe89523386091465, 0xf6bbb397f1135823,
+ 0xee2ba6c0678b597f, 0x746aa07ded582e2c,
+ 0x94db483840b717ef, 0xa8c2a44eb4571cdc,
+ 0xba121a4650e4ddeb, 0x92f34d62616ce413,
+ 0xe896a0d7e51e1566, 0x77b020baf9c81d17,
+ 0x915e2486ef32cd60, 0xace1474dc1d122e,
+ 0xb5b5ada8aaff80b8, 0xd819992132456ba,
+ 0xe3231912d5bf60e6, 0x10e1fff697ed6c69,
+ 0x8df5efabc5979c8f, 0xca8d3ffa1ef463c1,
+ 0xb1736b96b6fd83b3, 0xbd308ff8a6b17cb2,
+ 0xddd0467c64bce4a0, 0xac7cb3f6d05ddbde,
+ 0x8aa22c0dbef60ee4, 0x6bcdf07a423aa96b,
+ 0xad4ab7112eb3929d, 0x86c16c98d2c953c6,
+ 0xd89d64d57a607744, 0xe871c7bf077ba8b7,
+ 0x87625f056c7c4a8b, 0x11471cd764ad4972,
+ 0xa93af6c6c79b5d2d, 0xd598e40d3dd89bcf,
+ 0xd389b47879823479, 0x4aff1d108d4ec2c3,
+ 0x843610cb4bf160cb, 0xcedf722a585139ba,
+ 0xa54394fe1eedb8fe, 0xc2974eb4ee658828,
+ 0xce947a3da6a9273e, 0x733d226229feea32,
+ 0x811ccc668829b887, 0x806357d5a3f525f,
+ 0xa163ff802a3426a8, 0xca07c2dcb0cf26f7,
+ 0xc9bcff6034c13052, 0xfc89b393dd02f0b5,
+ 0xfc2c3f3841f17c67, 0xbbac2078d443ace2,
+ 0x9d9ba7832936edc0, 0xd54b944b84aa4c0d,
+ 0xc5029163f384a931, 0xa9e795e65d4df11,
+ 0xf64335bcf065d37d, 0x4d4617b5ff4a16d5,
+ 0x99ea0196163fa42e, 0x504bced1bf8e4e45,
+ 0xc06481fb9bcf8d39, 0xe45ec2862f71e1d6,
+ 0xf07da27a82c37088, 0x5d767327bb4e5a4c,
+ 0x964e858c91ba2655, 0x3a6a07f8d510f86f,
+ 0xbbe226efb628afea, 0x890489f70a55368b,
+ 0xeadab0aba3b2dbe5, 0x2b45ac74ccea842e,
+ 0x92c8ae6b464fc96f, 0x3b0b8bc90012929d,
+ 0xb77ada0617e3bbcb, 0x9ce6ebb40173744,
+ 0xe55990879ddcaabd, 0xcc420a6a101d0515,
+ 0x8f57fa54c2a9eab6, 0x9fa946824a12232d,
+ 0xb32df8e9f3546564, 0x47939822dc96abf9,
+ 0xdff9772470297ebd, 0x59787e2b93bc56f7,
+ 0x8bfbea76c619ef36, 0x57eb4edb3c55b65a,
+ 0xaefae51477a06b03, 0xede622920b6b23f1,
+ 0xdab99e59958885c4, 0xe95fab368e45eced,
+ 0x88b402f7fd75539b, 0x11dbcb0218ebb414,
+ 0xaae103b5fcd2a881, 0xd652bdc29f26a119,
+ 0xd59944a37c0752a2, 0x4be76d3346f0495f,
+ 0x857fcae62d8493a5, 0x6f70a4400c562ddb,
+ 0xa6dfbd9fb8e5b88e, 0xcb4ccd500f6bb952,
+ 0xd097ad07a71f26b2, 0x7e2000a41346a7a7,
+ 0x825ecc24c873782f, 0x8ed400668c0c28c8,
+ 0xa2f67f2dfa90563b, 0x728900802f0f32fa,
+ 0xcbb41ef979346bca, 0x4f2b40a03ad2ffb9,
+ 0xfea126b7d78186bc, 0xe2f610c84987bfa8,
+ 0x9f24b832e6b0f436, 0xdd9ca7d2df4d7c9,
+ 0xc6ede63fa05d3143, 0x91503d1c79720dbb,
+ 0xf8a95fcf88747d94, 0x75a44c6397ce912a,
+ 0x9b69dbe1b548ce7c, 0xc986afbe3ee11aba,
+ 0xc24452da229b021b, 0xfbe85badce996168,
+ 0xf2d56790ab41c2a2, 0xfae27299423fb9c3,
+ 0x97c560ba6b0919a5, 0xdccd879fc967d41a,
+ 0xbdb6b8e905cb600f, 0x5400e987bbc1c920,
+ 0xed246723473e3813, 0x290123e9aab23b68,
+ 0x9436c0760c86e30b, 0xf9a0b6720aaf6521,
+ 0xb94470938fa89bce, 0xf808e40e8d5b3e69,
+ 0xe7958cb87392c2c2, 0xb60b1d1230b20e04,
+ 0x90bd77f3483bb9b9, 0xb1c6f22b5e6f48c2,
+ 0xb4ecd5f01a4aa828, 0x1e38aeb6360b1af3,
+ 0xe2280b6c20dd5232, 0x25c6da63c38de1b0,
+ 0x8d590723948a535f, 0x579c487e5a38ad0e,
+ 0xb0af48ec79ace837, 0x2d835a9df0c6d851,
+ 0xdcdb1b2798182244, 0xf8e431456cf88e65,
+ 0x8a08f0f8bf0f156b, 0x1b8e9ecb641b58ff,
+ 0xac8b2d36eed2dac5, 0xe272467e3d222f3f,
+ 0xd7adf884aa879177, 0x5b0ed81dcc6abb0f,
+ 0x86ccbb52ea94baea, 0x98e947129fc2b4e9,
+ 0xa87fea27a539e9a5, 0x3f2398d747b36224,
+ 0xd29fe4b18e88640e, 0x8eec7f0d19a03aad,
+ 0x83a3eeeef9153e89, 0x1953cf68300424ac,
+ 0xa48ceaaab75a8e2b, 0x5fa8c3423c052dd7,
+ 0xcdb02555653131b6, 0x3792f412cb06794d,
+ 0x808e17555f3ebf11, 0xe2bbd88bbee40bd0,
+ 0xa0b19d2ab70e6ed6, 0x5b6aceaeae9d0ec4,
+ 0xc8de047564d20a8b, 0xf245825a5a445275,
+ 0xfb158592be068d2e, 0xeed6e2f0f0d56712,
+ 0x9ced737bb6c4183d, 0x55464dd69685606b,
+ 0xc428d05aa4751e4c, 0xaa97e14c3c26b886,
+ 0xf53304714d9265df, 0xd53dd99f4b3066a8,
+ 0x993fe2c6d07b7fab, 0xe546a8038efe4029,
+ 0xbf8fdb78849a5f96, 0xde98520472bdd033,
+ 0xef73d256a5c0f77c, 0x963e66858f6d4440,
+ 0x95a8637627989aad, 0xdde7001379a44aa8,
+ 0xbb127c53b17ec159, 0x5560c018580d5d52,
+ 0xe9d71b689dde71af, 0xaab8f01e6e10b4a6,
+ 0x9226712162ab070d, 0xcab3961304ca70e8,
+ 0xb6b00d69bb55c8d1, 0x3d607b97c5fd0d22,
+ 0xe45c10c42a2b3b05, 0x8cb89a7db77c506a,
+ 0x8eb98a7a9a5b04e3, 0x77f3608e92adb242,
+ 0xb267ed1940f1c61c, 0x55f038b237591ed3,
+ 0xdf01e85f912e37a3, 0x6b6c46dec52f6688,
+ 0x8b61313bbabce2c6, 0x2323ac4b3b3da015,
+ 0xae397d8aa96c1b77, 0xabec975e0a0d081a,
+ 0xd9c7dced53c72255, 0x96e7bd358c904a21,
+ 0x881cea14545c7575, 0x7e50d64177da2e54,
+ 0xaa242499697392d2, 0xdde50bd1d5d0b9e9,
+ 0xd4ad2dbfc3d07787, 0x955e4ec64b44e864,
+ 0x84ec3c97da624ab4, 0xbd5af13bef0b113e,
+ 0xa6274bbdd0fadd61, 0xecb1ad8aeacdd58e,
+ 0xcfb11ead453994ba, 0x67de18eda5814af2,
+ 0x81ceb32c4b43fcf4, 0x80eacf948770ced7,
+ 0xa2425ff75e14fc31, 0xa1258379a94d028d,
+ 0xcad2f7f5359a3b3e, 0x96ee45813a04330,
+ 0xfd87b5f28300ca0d, 0x8bca9d6e188853fc,
+ 0x9e74d1b791e07e48, 0x775ea264cf55347e,
+ 0xc612062576589dda, 0x95364afe032a819e,
+ 0xf79687aed3eec551, 0x3a83ddbd83f52205,
+ 0x9abe14cd44753b52, 0xc4926a9672793543,
+ 0xc16d9a0095928a27, 0x75b7053c0f178294,
+ 0xf1c90080baf72cb1, 0x5324c68b12dd6339,
+ 0x971da05074da7bee, 0xd3f6fc16ebca5e04,
+ 0xbce5086492111aea, 0x88f4bb1ca6bcf585,
+ 0xec1e4a7db69561a5, 0x2b31e9e3d06c32e6,
+ 0x9392ee8e921d5d07, 0x3aff322e62439fd0,
+ 0xb877aa3236a4b449, 0x9befeb9fad487c3,
+ 0xe69594bec44de15b, 0x4c2ebe687989a9b4,
+ 0x901d7cf73ab0acd9, 0xf9d37014bf60a11,
+ 0xb424dc35095cd80f, 0x538484c19ef38c95,
+ 0xe12e13424bb40e13, 0x2865a5f206b06fba,
+ 0x8cbccc096f5088cb, 0xf93f87b7442e45d4,
+ 0xafebff0bcb24aafe, 0xf78f69a51539d749,
+ 0xdbe6fecebdedd5be, 0xb573440e5a884d1c,
+ 0x89705f4136b4a597, 0x31680a88f8953031,
+ 0xabcc77118461cefc, 0xfdc20d2b36ba7c3e,
+ 0xd6bf94d5e57a42bc, 0x3d32907604691b4d,
+ 0x8637bd05af6c69b5, 0xa63f9a49c2c1b110,
+ 0xa7c5ac471b478423, 0xfcf80dc33721d54,
+ 0xd1b71758e219652b, 0xd3c36113404ea4a9,
+ 0x83126e978d4fdf3b, 0x645a1cac083126ea,
+ 0xa3d70a3d70a3d70a, 0x3d70a3d70a3d70a4,
+ 0xcccccccccccccccc, 0xcccccccccccccccd,
+ 0x8000000000000000, 0x0,
+ 0xa000000000000000, 0x0,
+ 0xc800000000000000, 0x0,
+ 0xfa00000000000000, 0x0,
+ 0x9c40000000000000, 0x0,
+ 0xc350000000000000, 0x0,
+ 0xf424000000000000, 0x0,
+ 0x9896800000000000, 0x0,
+ 0xbebc200000000000, 0x0,
+ 0xee6b280000000000, 0x0,
+ 0x9502f90000000000, 0x0,
+ 0xba43b74000000000, 0x0,
+ 0xe8d4a51000000000, 0x0,
+ 0x9184e72a00000000, 0x0,
+ 0xb5e620f480000000, 0x0,
+ 0xe35fa931a0000000, 0x0,
+ 0x8e1bc9bf04000000, 0x0,
+ 0xb1a2bc2ec5000000, 0x0,
+ 0xde0b6b3a76400000, 0x0,
+ 0x8ac7230489e80000, 0x0,
+ 0xad78ebc5ac620000, 0x0,
+ 0xd8d726b7177a8000, 0x0,
+ 0x878678326eac9000, 0x0,
+ 0xa968163f0a57b400, 0x0,
+ 0xd3c21bcecceda100, 0x0,
+ 0x84595161401484a0, 0x0,
+ 0xa56fa5b99019a5c8, 0x0,
+ 0xcecb8f27f4200f3a, 0x0,
+ 0x813f3978f8940984, 0x4000000000000000,
+ 0xa18f07d736b90be5, 0x5000000000000000,
+ 0xc9f2c9cd04674ede, 0xa400000000000000,
+ 0xfc6f7c4045812296, 0x4d00000000000000,
+ 0x9dc5ada82b70b59d, 0xf020000000000000,
+ 0xc5371912364ce305, 0x6c28000000000000,
+ 0xf684df56c3e01bc6, 0xc732000000000000,
+ 0x9a130b963a6c115c, 0x3c7f400000000000,
+ 0xc097ce7bc90715b3, 0x4b9f100000000000,
+ 0xf0bdc21abb48db20, 0x1e86d40000000000,
+ 0x96769950b50d88f4, 0x1314448000000000,
+ 0xbc143fa4e250eb31, 0x17d955a000000000,
+ 0xeb194f8e1ae525fd, 0x5dcfab0800000000,
+ 0x92efd1b8d0cf37be, 0x5aa1cae500000000,
+ 0xb7abc627050305ad, 0xf14a3d9e40000000,
+ 0xe596b7b0c643c719, 0x6d9ccd05d0000000,
+ 0x8f7e32ce7bea5c6f, 0xe4820023a2000000,
+ 0xb35dbf821ae4f38b, 0xdda2802c8a800000,
+ 0xe0352f62a19e306e, 0xd50b2037ad200000,
+ 0x8c213d9da502de45, 0x4526f422cc340000,
+ 0xaf298d050e4395d6, 0x9670b12b7f410000,
+ 0xdaf3f04651d47b4c, 0x3c0cdd765f114000,
+ 0x88d8762bf324cd0f, 0xa5880a69fb6ac800,
+ 0xab0e93b6efee0053, 0x8eea0d047a457a00,
+ 0xd5d238a4abe98068, 0x72a4904598d6d880,
+ 0x85a36366eb71f041, 0x47a6da2b7f864750,
+ 0xa70c3c40a64e6c51, 0x999090b65f67d924,
+ 0xd0cf4b50cfe20765, 0xfff4b4e3f741cf6d,
+ 0x82818f1281ed449f, 0xbff8f10e7a8921a4,
+ 0xa321f2d7226895c7, 0xaff72d52192b6a0d,
+ 0xcbea6f8ceb02bb39, 0x9bf4f8a69f764490,
+ 0xfee50b7025c36a08, 0x2f236d04753d5b4,
+ 0x9f4f2726179a2245, 0x1d762422c946590,
+ 0xc722f0ef9d80aad6, 0x424d3ad2b7b97ef5,
+ 0xf8ebad2b84e0d58b, 0xd2e0898765a7deb2,
+ 0x9b934c3b330c8577, 0x63cc55f49f88eb2f,
+ 0xc2781f49ffcfa6d5, 0x3cbf6b71c76b25fb,
+ 0xf316271c7fc3908a, 0x8bef464e3945ef7a,
+ 0x97edd871cfda3a56, 0x97758bf0e3cbb5ac,
+ 0xbde94e8e43d0c8ec, 0x3d52eeed1cbea317,
+ 0xed63a231d4c4fb27, 0x4ca7aaa863ee4bdd,
+ 0x945e455f24fb1cf8, 0x8fe8caa93e74ef6a,
+ 0xb975d6b6ee39e436, 0xb3e2fd538e122b44,
+ 0xe7d34c64a9c85d44, 0x60dbbca87196b616,
+ 0x90e40fbeea1d3a4a, 0xbc8955e946fe31cd,
+ 0xb51d13aea4a488dd, 0x6babab6398bdbe41,
+ 0xe264589a4dcdab14, 0xc696963c7eed2dd1,
+ 0x8d7eb76070a08aec, 0xfc1e1de5cf543ca2,
+ 0xb0de65388cc8ada8, 0x3b25a55f43294bcb,
+ 0xdd15fe86affad912, 0x49ef0eb713f39ebe,
+ 0x8a2dbf142dfcc7ab, 0x6e3569326c784337,
+ 0xacb92ed9397bf996, 0x49c2c37f07965404,
+ 0xd7e77a8f87daf7fb, 0xdc33745ec97be906,
+ 0x86f0ac99b4e8dafd, 0x69a028bb3ded71a3,
+ 0xa8acd7c0222311bc, 0xc40832ea0d68ce0c,
+ 0xd2d80db02aabd62b, 0xf50a3fa490c30190,
+ 0x83c7088e1aab65db, 0x792667c6da79e0fa,
+ 0xa4b8cab1a1563f52, 0x577001b891185938,
+ 0xcde6fd5e09abcf26, 0xed4c0226b55e6f86,
+ 0x80b05e5ac60b6178, 0x544f8158315b05b4,
+ 0xa0dc75f1778e39d6, 0x696361ae3db1c721,
+ 0xc913936dd571c84c, 0x3bc3a19cd1e38e9,
+ 0xfb5878494ace3a5f, 0x4ab48a04065c723,
+ 0x9d174b2dcec0e47b, 0x62eb0d64283f9c76,
+ 0xc45d1df942711d9a, 0x3ba5d0bd324f8394,
+ 0xf5746577930d6500, 0xca8f44ec7ee36479,
+ 0x9968bf6abbe85f20, 0x7e998b13cf4e1ecb,
+ 0xbfc2ef456ae276e8, 0x9e3fedd8c321a67e,
+ 0xefb3ab16c59b14a2, 0xc5cfe94ef3ea101e,
+ 0x95d04aee3b80ece5, 0xbba1f1d158724a12,
+ 0xbb445da9ca61281f, 0x2a8a6e45ae8edc97,
+ 0xea1575143cf97226, 0xf52d09d71a3293bd,
+ 0x924d692ca61be758, 0x593c2626705f9c56,
+ 0xb6e0c377cfa2e12e, 0x6f8b2fb00c77836c,
+ 0xe498f455c38b997a, 0xb6dfb9c0f956447,
+ 0x8edf98b59a373fec, 0x4724bd4189bd5eac,
+ 0xb2977ee300c50fe7, 0x58edec91ec2cb657,
+ 0xdf3d5e9bc0f653e1, 0x2f2967b66737e3ed,
+ 0x8b865b215899f46c, 0xbd79e0d20082ee74,
+ 0xae67f1e9aec07187, 0xecd8590680a3aa11,
+ 0xda01ee641a708de9, 0xe80e6f4820cc9495,
+ 0x884134fe908658b2, 0x3109058d147fdcdd,
+ 0xaa51823e34a7eede, 0xbd4b46f0599fd415,
+ 0xd4e5e2cdc1d1ea96, 0x6c9e18ac7007c91a,
+ 0x850fadc09923329e, 0x3e2cf6bc604ddb0,
+ 0xa6539930bf6bff45, 0x84db8346b786151c,
+ 0xcfe87f7cef46ff16, 0xe612641865679a63,
+ 0x81f14fae158c5f6e, 0x4fcb7e8f3f60c07e,
+ 0xa26da3999aef7749, 0xe3be5e330f38f09d,
+ 0xcb090c8001ab551c, 0x5cadf5bfd3072cc5,
+ 0xfdcb4fa002162a63, 0x73d9732fc7c8f7f6,
+ 0x9e9f11c4014dda7e, 0x2867e7fddcdd9afa,
+ 0xc646d63501a1511d, 0xb281e1fd541501b8,
+ 0xf7d88bc24209a565, 0x1f225a7ca91a4226,
+ 0x9ae757596946075f, 0x3375788de9b06958,
+ 0xc1a12d2fc3978937, 0x52d6b1641c83ae,
+ 0xf209787bb47d6b84, 0xc0678c5dbd23a49a,
+ 0x9745eb4d50ce6332, 0xf840b7ba963646e0,
+ 0xbd176620a501fbff, 0xb650e5a93bc3d898,
+ 0xec5d3fa8ce427aff, 0xa3e51f138ab4cebe,
+ 0x93ba47c980e98cdf, 0xc66f336c36b10137,
+ 0xb8a8d9bbe123f017, 0xb80b0047445d4184,
+ 0xe6d3102ad96cec1d, 0xa60dc059157491e5,
+ 0x9043ea1ac7e41392, 0x87c89837ad68db2f,
+ 0xb454e4a179dd1877, 0x29babe4598c311fb,
+ 0xe16a1dc9d8545e94, 0xf4296dd6fef3d67a,
+ 0x8ce2529e2734bb1d, 0x1899e4a65f58660c,
+ 0xb01ae745b101e9e4, 0x5ec05dcff72e7f8f,
+ 0xdc21a1171d42645d, 0x76707543f4fa1f73,
+ 0x899504ae72497eba, 0x6a06494a791c53a8,
+ 0xabfa45da0edbde69, 0x487db9d17636892,
+ 0xd6f8d7509292d603, 0x45a9d2845d3c42b6,
+ 0x865b86925b9bc5c2, 0xb8a2392ba45a9b2,
+ 0xa7f26836f282b732, 0x8e6cac7768d7141e,
+ 0xd1ef0244af2364ff, 0x3207d795430cd926,
+ 0x8335616aed761f1f, 0x7f44e6bd49e807b8,
+ 0xa402b9c5a8d3a6e7, 0x5f16206c9c6209a6,
+ 0xcd036837130890a1, 0x36dba887c37a8c0f,
+ 0x802221226be55a64, 0xc2494954da2c9789,
+ 0xa02aa96b06deb0fd, 0xf2db9baa10b7bd6c,
+ 0xc83553c5c8965d3d, 0x6f92829494e5acc7,
+ 0xfa42a8b73abbf48c, 0xcb772339ba1f17f9,
+ 0x9c69a97284b578d7, 0xff2a760414536efb,
+ 0xc38413cf25e2d70d, 0xfef5138519684aba,
+ 0xf46518c2ef5b8cd1, 0x7eb258665fc25d69,
+ 0x98bf2f79d5993802, 0xef2f773ffbd97a61,
+ 0xbeeefb584aff8603, 0xaafb550ffacfd8fa,
+ 0xeeaaba2e5dbf6784, 0x95ba2a53f983cf38,
+ 0x952ab45cfa97a0b2, 0xdd945a747bf26183,
+ 0xba756174393d88df, 0x94f971119aeef9e4,
+ 0xe912b9d1478ceb17, 0x7a37cd5601aab85d,
+ 0x91abb422ccb812ee, 0xac62e055c10ab33a,
+ 0xb616a12b7fe617aa, 0x577b986b314d6009,
+ 0xe39c49765fdf9d94, 0xed5a7e85fda0b80b,
+ 0x8e41ade9fbebc27d, 0x14588f13be847307,
+ 0xb1d219647ae6b31c, 0x596eb2d8ae258fc8,
+ 0xde469fbd99a05fe3, 0x6fca5f8ed9aef3bb,
+ 0x8aec23d680043bee, 0x25de7bb9480d5854,
+ 0xada72ccc20054ae9, 0xaf561aa79a10ae6a,
+ 0xd910f7ff28069da4, 0x1b2ba1518094da04,
+ 0x87aa9aff79042286, 0x90fb44d2f05d0842,
+ 0xa99541bf57452b28, 0x353a1607ac744a53,
+ 0xd3fa922f2d1675f2, 0x42889b8997915ce8,
+ 0x847c9b5d7c2e09b7, 0x69956135febada11,
+ 0xa59bc234db398c25, 0x43fab9837e699095,
+ 0xcf02b2c21207ef2e, 0x94f967e45e03f4bb,
+ 0x8161afb94b44f57d, 0x1d1be0eebac278f5,
+ 0xa1ba1ba79e1632dc, 0x6462d92a69731732,
+ 0xca28a291859bbf93, 0x7d7b8f7503cfdcfe,
+ 0xfcb2cb35e702af78, 0x5cda735244c3d43e,
+ 0x9defbf01b061adab, 0x3a0888136afa64a7,
+ 0xc56baec21c7a1916, 0x88aaa1845b8fdd0,
+ 0xf6c69a72a3989f5b, 0x8aad549e57273d45,
+ 0x9a3c2087a63f6399, 0x36ac54e2f678864b,
+ 0xc0cb28a98fcf3c7f, 0x84576a1bb416a7dd,
+ 0xf0fdf2d3f3c30b9f, 0x656d44a2a11c51d5,
+ 0x969eb7c47859e743, 0x9f644ae5a4b1b325,
+ 0xbc4665b596706114, 0x873d5d9f0dde1fee,
+ 0xeb57ff22fc0c7959, 0xa90cb506d155a7ea,
+ 0x9316ff75dd87cbd8, 0x9a7f12442d588f2,
+ 0xb7dcbf5354e9bece, 0xc11ed6d538aeb2f,
+ 0xe5d3ef282a242e81, 0x8f1668c8a86da5fa,
+ 0x8fa475791a569d10, 0xf96e017d694487bc,
+ 0xb38d92d760ec4455, 0x37c981dcc395a9ac,
+ 0xe070f78d3927556a, 0x85bbe253f47b1417,
+ 0x8c469ab843b89562, 0x93956d7478ccec8e,
+ 0xaf58416654a6babb, 0x387ac8d1970027b2,
+ 0xdb2e51bfe9d0696a, 0x6997b05fcc0319e,
+ 0x88fcf317f22241e2, 0x441fece3bdf81f03,
+ 0xab3c2fddeeaad25a, 0xd527e81cad7626c3,
+ 0xd60b3bd56a5586f1, 0x8a71e223d8d3b074,
+ 0x85c7056562757456, 0xf6872d5667844e49,
+ 0xa738c6bebb12d16c, 0xb428f8ac016561db,
+ 0xd106f86e69d785c7, 0xe13336d701beba52,
+ 0x82a45b450226b39c, 0xecc0024661173473,
+ 0xa34d721642b06084, 0x27f002d7f95d0190,
+ 0xcc20ce9bd35c78a5, 0x31ec038df7b441f4,
+ 0xff290242c83396ce, 0x7e67047175a15271,
+ 0x9f79a169bd203e41, 0xf0062c6e984d386,
+ 0xc75809c42c684dd1, 0x52c07b78a3e60868,
+ 0xf92e0c3537826145, 0xa7709a56ccdf8a82,
+ 0x9bbcc7a142b17ccb, 0x88a66076400bb691,
+ 0xc2abf989935ddbfe, 0x6acff893d00ea435,
+ 0xf356f7ebf83552fe, 0x583f6b8c4124d43,
+ 0x98165af37b2153de, 0xc3727a337a8b704a,
+ 0xbe1bf1b059e9a8d6, 0x744f18c0592e4c5c,
+ 0xeda2ee1c7064130c, 0x1162def06f79df73,
+ 0x9485d4d1c63e8be7, 0x8addcb5645ac2ba8,
+ 0xb9a74a0637ce2ee1, 0x6d953e2bd7173692,
+ 0xe8111c87c5c1ba99, 0xc8fa8db6ccdd0437,
+ 0x910ab1d4db9914a0, 0x1d9c9892400a22a2,
+ 0xb54d5e4a127f59c8, 0x2503beb6d00cab4b,
+ 0xe2a0b5dc971f303a, 0x2e44ae64840fd61d,
+ 0x8da471a9de737e24, 0x5ceaecfed289e5d2,
+ 0xb10d8e1456105dad, 0x7425a83e872c5f47,
+ 0xdd50f1996b947518, 0xd12f124e28f77719,
+ 0x8a5296ffe33cc92f, 0x82bd6b70d99aaa6f,
+ 0xace73cbfdc0bfb7b, 0x636cc64d1001550b,
+ 0xd8210befd30efa5a, 0x3c47f7e05401aa4e,
+ 0x8714a775e3e95c78, 0x65acfaec34810a71,
+ 0xa8d9d1535ce3b396, 0x7f1839a741a14d0d,
+ 0xd31045a8341ca07c, 0x1ede48111209a050,
+ 0x83ea2b892091e44d, 0x934aed0aab460432,
+ 0xa4e4b66b68b65d60, 0xf81da84d5617853f,
+ 0xce1de40642e3f4b9, 0x36251260ab9d668e,
+ 0x80d2ae83e9ce78f3, 0xc1d72b7c6b426019,
+ 0xa1075a24e4421730, 0xb24cf65b8612f81f,
+ 0xc94930ae1d529cfc, 0xdee033f26797b627,
+ 0xfb9b7cd9a4a7443c, 0x169840ef017da3b1,
+ 0x9d412e0806e88aa5, 0x8e1f289560ee864e,
+ 0xc491798a08a2ad4e, 0xf1a6f2bab92a27e2,
+ 0xf5b5d7ec8acb58a2, 0xae10af696774b1db,
+ 0x9991a6f3d6bf1765, 0xacca6da1e0a8ef29,
+ 0xbff610b0cc6edd3f, 0x17fd090a58d32af3,
+ 0xeff394dcff8a948e, 0xddfc4b4cef07f5b0,
+ 0x95f83d0a1fb69cd9, 0x4abdaf101564f98e,
+ 0xbb764c4ca7a4440f, 0x9d6d1ad41abe37f1,
+ 0xea53df5fd18d5513, 0x84c86189216dc5ed,
+ 0x92746b9be2f8552c, 0x32fd3cf5b4e49bb4,
+ 0xb7118682dbb66a77, 0x3fbc8c33221dc2a1,
+ 0xe4d5e82392a40515, 0xfabaf3feaa5334a,
+ 0x8f05b1163ba6832d, 0x29cb4d87f2a7400e,
+ 0xb2c71d5bca9023f8, 0x743e20e9ef511012,
+ 0xdf78e4b2bd342cf6, 0x914da9246b255416,
+ 0x8bab8eefb6409c1a, 0x1ad089b6c2f7548e,
+ 0xae9672aba3d0c320, 0xa184ac2473b529b1,
+ 0xda3c0f568cc4f3e8, 0xc9e5d72d90a2741e,
+ 0x8865899617fb1871, 0x7e2fa67c7a658892,
+ 0xaa7eebfb9df9de8d, 0xddbb901b98feeab7,
+ 0xd51ea6fa85785631, 0x552a74227f3ea565,
+ 0x8533285c936b35de, 0xd53a88958f87275f,
+ 0xa67ff273b8460356, 0x8a892abaf368f137,
+ 0xd01fef10a657842c, 0x2d2b7569b0432d85,
+ 0x8213f56a67f6b29b, 0x9c3b29620e29fc73,
+ 0xa298f2c501f45f42, 0x8349f3ba91b47b8f,
+ 0xcb3f2f7642717713, 0x241c70a936219a73,
+ 0xfe0efb53d30dd4d7, 0xed238cd383aa0110,
+ 0x9ec95d1463e8a506, 0xf4363804324a40aa,
+ 0xc67bb4597ce2ce48, 0xb143c6053edcd0d5,
+ 0xf81aa16fdc1b81da, 0xdd94b7868e94050a,
+ 0x9b10a4e5e9913128, 0xca7cf2b4191c8326,
+ 0xc1d4ce1f63f57d72, 0xfd1c2f611f63a3f0,
+ 0xf24a01a73cf2dccf, 0xbc633b39673c8cec,
+ 0x976e41088617ca01, 0xd5be0503e085d813,
+ 0xbd49d14aa79dbc82, 0x4b2d8644d8a74e18,
+ 0xec9c459d51852ba2, 0xddf8e7d60ed1219e,
+ 0x93e1ab8252f33b45, 0xcabb90e5c942b503,
+ 0xb8da1662e7b00a17, 0x3d6a751f3b936243,
+ 0xe7109bfba19c0c9d, 0xcc512670a783ad4,
+ 0x906a617d450187e2, 0x27fb2b80668b24c5,
+ 0xb484f9dc9641e9da, 0xb1f9f660802dedf6,
+ 0xe1a63853bbd26451, 0x5e7873f8a0396973,
+ 0x8d07e33455637eb2, 0xdb0b487b6423e1e8,
+ 0xb049dc016abc5e5f, 0x91ce1a9a3d2cda62,
+ 0xdc5c5301c56b75f7, 0x7641a140cc7810fb,
+ 0x89b9b3e11b6329ba, 0xa9e904c87fcb0a9d,
+ 0xac2820d9623bf429, 0x546345fa9fbdcd44,
+ 0xd732290fbacaf133, 0xa97c177947ad4095,
+ 0x867f59a9d4bed6c0, 0x49ed8eabcccc485d,
+ 0xa81f301449ee8c70, 0x5c68f256bfff5a74,
+ 0xd226fc195c6a2f8c, 0x73832eec6fff3111,
+ 0x83585d8fd9c25db7, 0xc831fd53c5ff7eab,
+ 0xa42e74f3d032f525, 0xba3e7ca8b77f5e55,
+ 0xcd3a1230c43fb26f, 0x28ce1bd2e55f35eb,
+ 0x80444b5e7aa7cf85, 0x7980d163cf5b81b3,
+ 0xa0555e361951c366, 0xd7e105bcc332621f,
+ 0xc86ab5c39fa63440, 0x8dd9472bf3fefaa7,
+ 0xfa856334878fc150, 0xb14f98f6f0feb951,
+ 0x9c935e00d4b9d8d2, 0x6ed1bf9a569f33d3,
+ 0xc3b8358109e84f07, 0xa862f80ec4700c8,
+ 0xf4a642e14c6262c8, 0xcd27bb612758c0fa,
+ 0x98e7e9cccfbd7dbd, 0x8038d51cb897789c,
+ 0xbf21e44003acdd2c, 0xe0470a63e6bd56c3,
+ 0xeeea5d5004981478, 0x1858ccfce06cac74,
+ 0x95527a5202df0ccb, 0xf37801e0c43ebc8,
+ 0xbaa718e68396cffd, 0xd30560258f54e6ba,
+ 0xe950df20247c83fd, 0x47c6b82ef32a2069,
+ 0x91d28b7416cdd27e, 0x4cdc331d57fa5441,
+ 0xb6472e511c81471d, 0xe0133fe4adf8e952,
+ 0xe3d8f9e563a198e5, 0x58180fddd97723a6,
+ 0x8e679c2f5e44ff8f, 0x570f09eaa7ea7648,
+ };
+};
+
+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE
+
+template <class unused>
+constexpr uint64_t
+ powers_template<unused>::power_of_five_128[number_of_entries];
+
+#endif
+
+using powers = powers_template<>;
+
+} // namespace fast_float
+
+#endif
+
+#ifndef FASTFLOAT_DECIMAL_TO_BINARY_H
+#define FASTFLOAT_DECIMAL_TO_BINARY_H
+
+#include <cfloat>
+#include <cinttypes>
+#include <cmath>
+#include <cstdint>
+#include <cstdlib>
+#include <cstring>
+
+namespace fast_float {
+
+// This will compute or rather approximate w * 5**q and return a pair of 64-bit
+// words approximating the result, with the "high" part corresponding to the
+// most significant bits and the low part corresponding to the least significant
+// bits.
+//
+template <int bit_precision>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 value128
+compute_product_approximation(int64_t q, uint64_t w) {
+ const int index = 2 * int(q - powers::smallest_power_of_five);
+ // For small values of q, e.g., q in [0,27], the answer is always exact
+ // because The line value128 firstproduct = full_multiplication(w,
+ // power_of_five_128[index]); gives the exact answer.
+ value128 firstproduct =
+ full_multiplication(w, powers::power_of_five_128[index]);
+ static_assert((bit_precision >= 0) && (bit_precision <= 64),
+ " precision should be in (0,64]");
+ constexpr uint64_t precision_mask =
+ (bit_precision < 64) ? (uint64_t(0xFFFFFFFFFFFFFFFF) >> bit_precision)
+ : uint64_t(0xFFFFFFFFFFFFFFFF);
+ if ((firstproduct.high & precision_mask) ==
+ precision_mask) { // could further guard with (lower + w < lower)
+ // regarding the second product, we only need secondproduct.high, but our
+ // expectation is that the compiler will optimize this extra work away if
+ // needed.
+ value128 secondproduct =
+ full_multiplication(w, powers::power_of_five_128[index + 1]);
+ firstproduct.low += secondproduct.high;
+ if (secondproduct.high > firstproduct.low) {
+ firstproduct.high++;
+ }
+ }
+ return firstproduct;
+}
+
+namespace detail {
+/**
+ * For q in (0,350), we have that
+ * f = (((152170 + 65536) * q ) >> 16);
+ * is equal to
+ * floor(p) + q
+ * where
+ * p = log(5**q)/log(2) = q * log(5)/log(2)
+ *
+ * For negative values of q in (-400,0), we have that
+ * f = (((152170 + 65536) * q ) >> 16);
+ * is equal to
+ * -ceil(p) + q
+ * where
+ * p = log(5**-q)/log(2) = -q * log(5)/log(2)
+ */
+constexpr fastfloat_really_inline int32_t power(int32_t q) noexcept {
+ return (((152170 + 65536) * q) >> 16) + 63;
+}
+} // namespace detail
+
+// create an adjusted mantissa, biased by the invalid power2
+// for significant digits already multiplied by 10 ** q.
+template <typename binary>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 adjusted_mantissa
+compute_error_scaled(int64_t q, uint64_t w, int lz) noexcept {
+ int hilz = int(w >> 63) ^ 1;
+ adjusted_mantissa answer;
+ answer.mantissa = w << hilz;
+ int bias = binary::mantissa_explicit_bits() - binary::minimum_exponent();
+ answer.power2 = int32_t(detail::power(int32_t(q)) + bias - hilz - lz - 62 +
+ invalid_am_bias);
+ return answer;
+}
+
+// w * 10 ** q, without rounding the representation up.
+// the power2 in the exponent will be adjusted by invalid_am_bias.
+template <typename binary>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
+compute_error(int64_t q, uint64_t w) noexcept {
+ int lz = leading_zeroes(w);
+ w <<= lz;
+ value128 product =
+ compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w);
+ return compute_error_scaled<binary>(q, product.high, lz);
+}
+
+// w * 10 ** q
+// The returned value should be a valid ieee64 number that simply need to be
+// packed. However, in some very rare cases, the computation will fail. In such
+// cases, we return an adjusted_mantissa with a negative power of 2: the caller
+// should recompute in such cases.
+template <typename binary>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
+compute_float(int64_t q, uint64_t w) noexcept {
+ adjusted_mantissa answer;
+ if ((w == 0) || (q < binary::smallest_power_of_ten())) {
+ answer.power2 = 0;
+ answer.mantissa = 0;
+ // result should be zero
+ return answer;
+ }
+ if (q > binary::largest_power_of_ten()) {
+ // we want to get infinity:
+ answer.power2 = binary::infinite_power();
+ answer.mantissa = 0;
+ return answer;
+ }
+ // At this point in time q is in [powers::smallest_power_of_five,
+ // powers::largest_power_of_five].
+
+ // We want the most significant bit of i to be 1. Shift if needed.
+ int lz = leading_zeroes(w);
+ w <<= lz;
+
+ // The required precision is binary::mantissa_explicit_bits() + 3 because
+ // 1. We need the implicit bit
+ // 2. We need an extra bit for rounding purposes
+ // 3. We might lose a bit due to the "upperbit" routine (result too small,
+ // requiring a shift)
+
+ value128 product =
+ compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w);
+ // The computed 'product' is always sufficient.
+ // Mathematical proof:
+ // Noble Mushtak and Daniel Lemire, Fast Number Parsing Without Fallback (to
+ // appear) See script/mushtak_lemire.py
+
+ // The "compute_product_approximation" function can be slightly slower than a
+ // branchless approach: value128 product = compute_product(q, w); but in
+ // practice, we can win big with the compute_product_approximation if its
+ // additional branch is easily predicted. Which is best is data specific.
+ int upperbit = int(product.high >> 63);
+ int shift = upperbit + 64 - binary::mantissa_explicit_bits() - 3;
+
+ answer.mantissa = product.high >> shift;
+
+ answer.power2 = int32_t(detail::power(int32_t(q)) + upperbit - lz -
+ binary::minimum_exponent());
+ if (answer.power2 <= 0) { // we have a subnormal?
+ // Here have that answer.power2 <= 0 so -answer.power2 >= 0
+ if (-answer.power2 + 1 >=
+ 64) { // if we have more than 64 bits below the minimum exponent, you
+ // have a zero for sure.
+ answer.power2 = 0;
+ answer.mantissa = 0;
+ // result should be zero
+ return answer;
+ }
+ // next line is safe because -answer.power2 + 1 < 64
+ answer.mantissa >>= -answer.power2 + 1;
+ // Thankfully, we can't have both "round-to-even" and subnormals because
+ // "round-to-even" only occurs for powers close to 0.
+ answer.mantissa += (answer.mantissa & 1); // round up
+ answer.mantissa >>= 1;
+ // There is a weird scenario where we don't have a subnormal but just.
+ // Suppose we start with 2.2250738585072013e-308, we end up
+ // with 0x3fffffffffffff x 2^-1023-53 which is technically subnormal
+ // whereas 0x40000000000000 x 2^-1023-53 is normal. Now, we need to round
+ // up 0x3fffffffffffff x 2^-1023-53 and once we do, we are no longer
+ // subnormal, but we can only know this after rounding.
+ // So we only declare a subnormal if we are smaller than the threshold.
+ answer.power2 =
+ (answer.mantissa < (uint64_t(1) << binary::mantissa_explicit_bits()))
+ ? 0
+ : 1;
+ return answer;
+ }
+
+ // usually, we round *up*, but if we fall right in between and and we have an
+ // even basis, we need to round down
+ // We are only concerned with the cases where 5**q fits in single 64-bit word.
+ if ((product.low <= 1) && (q >= binary::min_exponent_round_to_even()) &&
+ (q <= binary::max_exponent_round_to_even()) &&
+ ((answer.mantissa & 3) == 1)) { // we may fall between two floats!
+ // To be in-between two floats we need that in doing
+ // answer.mantissa = product.high >> (upperbit + 64 -
+ // binary::mantissa_explicit_bits() - 3);
+ // ... we dropped out only zeroes. But if this happened, then we can go
+ // back!!!
+ if ((answer.mantissa << shift) == product.high) {
+ answer.mantissa &= ~uint64_t(1); // flip it so that we do not round up
+ }
+ }
+
+ answer.mantissa += (answer.mantissa & 1); // round up
+ answer.mantissa >>= 1;
+ if (answer.mantissa >= (uint64_t(2) << binary::mantissa_explicit_bits())) {
+ answer.mantissa = (uint64_t(1) << binary::mantissa_explicit_bits());
+ answer.power2++; // undo previous addition
+ }
+
+ answer.mantissa &= ~(uint64_t(1) << binary::mantissa_explicit_bits());
+ if (answer.power2 >= binary::infinite_power()) { // infinity
+ answer.power2 = binary::infinite_power();
+ answer.mantissa = 0;
+ }
+ return answer;
+}
+
+} // namespace fast_float
+
+#endif
+
+#ifndef FASTFLOAT_BIGINT_H
+#define FASTFLOAT_BIGINT_H
+
+#include <algorithm>
+#include <cstdint>
+#include <climits>
+#include <cstring>
+
+
+namespace fast_float {
+
+// the limb width: we want efficient multiplication of double the bits in
+// limb, or for 64-bit limbs, at least 64-bit multiplication where we can
+// extract the high and low parts efficiently. this is every 64-bit
+// architecture except for sparc, which emulates 128-bit multiplication.
+// we might have platforms where `CHAR_BIT` is not 8, so let's avoid
+// doing `8 * sizeof(limb)`.
+#if defined(FASTFLOAT_64BIT) && !defined(__sparc)
+#define FASTFLOAT_64BIT_LIMB 1
+typedef uint64_t limb;
+constexpr size_t limb_bits = 64;
+#else
+#define FASTFLOAT_32BIT_LIMB
+typedef uint32_t limb;
+constexpr size_t limb_bits = 32;
+#endif
+
+typedef span<limb> limb_span;
+
+// number of bits in a bigint. this needs to be at least the number
+// of bits required to store the largest bigint, which is
+// `log2(10**(digits + max_exp))`, or `log2(10**(767 + 342))`, or
+// ~3600 bits, so we round to 4000.
+constexpr size_t bigint_bits = 4000;
+constexpr size_t bigint_limbs = bigint_bits / limb_bits;
+
+// vector-like type that is allocated on the stack. the entire
+// buffer is pre-allocated, and only the length changes.
+template <uint16_t size> struct stackvec {
+ limb data[size];
+ // we never need more than 150 limbs
+ uint16_t length{0};
+
+ stackvec() = default;
+ stackvec(const stackvec &) = delete;
+ stackvec &operator=(const stackvec &) = delete;
+ stackvec(stackvec &&) = delete;
+ stackvec &operator=(stackvec &&other) = delete;
+
+ // create stack vector from existing limb span.
+ FASTFLOAT_CONSTEXPR20 stackvec(limb_span s) {
+ FASTFLOAT_ASSERT(try_extend(s));
+ }
+
+ FASTFLOAT_CONSTEXPR14 limb &operator[](size_t index) noexcept {
+ FASTFLOAT_DEBUG_ASSERT(index < length);
+ return data[index];
+ }
+ FASTFLOAT_CONSTEXPR14 const limb &operator[](size_t index) const noexcept {
+ FASTFLOAT_DEBUG_ASSERT(index < length);
+ return data[index];
+ }
+ // index from the end of the container
+ FASTFLOAT_CONSTEXPR14 const limb &rindex(size_t index) const noexcept {
+ FASTFLOAT_DEBUG_ASSERT(index < length);
+ size_t rindex = length - index - 1;
+ return data[rindex];
+ }
+
+ // set the length, without bounds checking.
+ FASTFLOAT_CONSTEXPR14 void set_len(size_t len) noexcept {
+ length = uint16_t(len);
+ }
+ constexpr size_t len() const noexcept { return length; }
+ constexpr bool is_empty() const noexcept { return length == 0; }
+ constexpr size_t capacity() const noexcept { return size; }
+ // append item to vector, without bounds checking
+ FASTFLOAT_CONSTEXPR14 void push_unchecked(limb value) noexcept {
+ data[length] = value;
+ length++;
+ }
+ // append item to vector, returning if item was added
+ FASTFLOAT_CONSTEXPR14 bool try_push(limb value) noexcept {
+ if (len() < capacity()) {
+ push_unchecked(value);
+ return true;
+ } else {
+ return false;
+ }
+ }
+ // add items to the vector, from a span, without bounds checking
+ FASTFLOAT_CONSTEXPR20 void extend_unchecked(limb_span s) noexcept {
+ limb *ptr = data + length;
+ std::copy_n(s.ptr, s.len(), ptr);
+ set_len(len() + s.len());
+ }
+ // try to add items to the vector, returning if items were added
+ FASTFLOAT_CONSTEXPR20 bool try_extend(limb_span s) noexcept {
+ if (len() + s.len() <= capacity()) {
+ extend_unchecked(s);
+ return true;
+ } else {
+ return false;
+ }
+ }
+ // resize the vector, without bounds checking
+ // if the new size is longer than the vector, assign value to each
+ // appended item.
+ FASTFLOAT_CONSTEXPR20
+ void resize_unchecked(size_t new_len, limb value) noexcept {
+ if (new_len > len()) {
+ size_t count = new_len - len();
+ limb *first = data + len();
+ limb *last = first + count;
+ ::std::fill(first, last, value);
+ set_len(new_len);
+ } else {
+ set_len(new_len);
+ }
+ }
+ // try to resize the vector, returning if the vector was resized.
+ FASTFLOAT_CONSTEXPR20 bool try_resize(size_t new_len, limb value) noexcept {
+ if (new_len > capacity()) {
+ return false;
+ } else {
+ resize_unchecked(new_len, value);
+ return true;
+ }
+ }
+ // check if any limbs are non-zero after the given index.
+ // this needs to be done in reverse order, since the index
+ // is relative to the most significant limbs.
+ FASTFLOAT_CONSTEXPR14 bool nonzero(size_t index) const noexcept {
+ while (index < len()) {
+ if (rindex(index) != 0) {
+ return true;
+ }
+ index++;
+ }
+ return false;
+ }
+ // normalize the big integer, so most-significant zero limbs are removed.
+ FASTFLOAT_CONSTEXPR14 void normalize() noexcept {
+ while (len() > 0 && rindex(0) == 0) {
+ length--;
+ }
+ }
+};
+
+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t
+empty_hi64(bool &truncated) noexcept {
+ truncated = false;
+ return 0;
+}
+
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
+uint64_hi64(uint64_t r0, bool &truncated) noexcept {
+ truncated = false;
+ int shl = leading_zeroes(r0);
+ return r0 << shl;
+}
+
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
+uint64_hi64(uint64_t r0, uint64_t r1, bool &truncated) noexcept {
+ int shl = leading_zeroes(r0);
+ if (shl == 0) {
+ truncated = r1 != 0;
+ return r0;
+ } else {
+ int shr = 64 - shl;
+ truncated = (r1 << shl) != 0;
+ return (r0 << shl) | (r1 >> shr);
+ }
+}
+
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
+uint32_hi64(uint32_t r0, bool &truncated) noexcept {
+ return uint64_hi64(r0, truncated);
+}
+
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
+uint32_hi64(uint32_t r0, uint32_t r1, bool &truncated) noexcept {
+ uint64_t x0 = r0;
+ uint64_t x1 = r1;
+ return uint64_hi64((x0 << 32) | x1, truncated);
+}
+
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
+uint32_hi64(uint32_t r0, uint32_t r1, uint32_t r2, bool &truncated) noexcept {
+ uint64_t x0 = r0;
+ uint64_t x1 = r1;
+ uint64_t x2 = r2;
+ return uint64_hi64(x0, (x1 << 32) | x2, truncated);
+}
+
+// add two small integers, checking for overflow.
+// we want an efficient operation. for msvc, where
+// we don't have built-in intrinsics, this is still
+// pretty fast.
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 limb
+scalar_add(limb x, limb y, bool &overflow) noexcept {
+ limb z;
+// gcc and clang
+#if defined(__has_builtin)
+#if __has_builtin(__builtin_add_overflow)
+ if (!cpp20_and_in_constexpr()) {
+ overflow = __builtin_add_overflow(x, y, &z);
+ return z;
+ }
+#endif
+#endif
+
+ // generic, this still optimizes correctly on MSVC.
+ z = x + y;
+ overflow = z < x;
+ return z;
+}
+
+// multiply two small integers, getting both the high and low bits.
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 limb
+scalar_mul(limb x, limb y, limb &carry) noexcept {
+#ifdef FASTFLOAT_64BIT_LIMB
+#if defined(__SIZEOF_INT128__)
+ // GCC and clang both define it as an extension.
+ __uint128_t z = __uint128_t(x) * __uint128_t(y) + __uint128_t(carry);
+ carry = limb(z >> limb_bits);
+ return limb(z);
+#else
+ // fallback, no native 128-bit integer multiplication with carry.
+ // on msvc, this optimizes identically, somehow.
+ value128 z = full_multiplication(x, y);
+ bool overflow;
+ z.low = scalar_add(z.low, carry, overflow);
+ z.high += uint64_t(overflow); // cannot overflow
+ carry = z.high;
+ return z.low;
+#endif
+#else
+ uint64_t z = uint64_t(x) * uint64_t(y) + uint64_t(carry);
+ carry = limb(z >> limb_bits);
+ return limb(z);
+#endif
+}
+
+// add scalar value to bigint starting from offset.
+// used in grade school multiplication
+template <uint16_t size>
+inline FASTFLOAT_CONSTEXPR20 bool small_add_from(stackvec<size> &vec, limb y,
+ size_t start) noexcept {
+ size_t index = start;
+ limb carry = y;
+ bool overflow;
+ while (carry != 0 && index < vec.len()) {
+ vec[index] = scalar_add(vec[index], carry, overflow);
+ carry = limb(overflow);
+ index += 1;
+ }
+ if (carry != 0) {
+ FASTFLOAT_TRY(vec.try_push(carry));
+ }
+ return true;
+}
+
+// add scalar value to bigint.
+template <uint16_t size>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
+small_add(stackvec<size> &vec, limb y) noexcept {
+ return small_add_from(vec, y, 0);
+}
+
+// multiply bigint by scalar value.
+template <uint16_t size>
+inline FASTFLOAT_CONSTEXPR20 bool small_mul(stackvec<size> &vec,
+ limb y) noexcept {
+ limb carry = 0;
+ for (size_t index = 0; index < vec.len(); index++) {
+ vec[index] = scalar_mul(vec[index], y, carry);
+ }
+ if (carry != 0) {
+ FASTFLOAT_TRY(vec.try_push(carry));
+ }
+ return true;
+}
+
+// add bigint to bigint starting from index.
+// used in grade school multiplication
+template <uint16_t size>
+FASTFLOAT_CONSTEXPR20 bool large_add_from(stackvec<size> &x, limb_span y,
+ size_t start) noexcept {
+ // the effective x buffer is from `xstart..x.len()`, so exit early
+ // if we can't get that current range.
+ if (x.len() < start || y.len() > x.len() - start) {
+ FASTFLOAT_TRY(x.try_resize(y.len() + start, 0));
+ }
+
+ bool carry = false;
+ for (size_t index = 0; index < y.len(); index++) {
+ limb xi = x[index + start];
+ limb yi = y[index];
+ bool c1 = false;
+ bool c2 = false;
+ xi = scalar_add(xi, yi, c1);
+ if (carry) {
+ xi = scalar_add(xi, 1, c2);
+ }
+ x[index + start] = xi;
+ carry = c1 | c2;
+ }
+
+ // handle overflow
+ if (carry) {
+ FASTFLOAT_TRY(small_add_from(x, 1, y.len() + start));
+ }
+ return true;
+}
+
+// add bigint to bigint.
+template <uint16_t size>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
+large_add_from(stackvec<size> &x, limb_span y) noexcept {
+ return large_add_from(x, y, 0);
+}
+
+// grade-school multiplication algorithm
+template <uint16_t size>
+FASTFLOAT_CONSTEXPR20 bool long_mul(stackvec<size> &x, limb_span y) noexcept {
+ limb_span xs = limb_span(x.data, x.len());
+ stackvec<size> z(xs);
+ limb_span zs = limb_span(z.data, z.len());
+
+ if (y.len() != 0) {
+ limb y0 = y[0];
+ FASTFLOAT_TRY(small_mul(x, y0));
+ for (size_t index = 1; index < y.len(); index++) {
+ limb yi = y[index];
+ stackvec<size> zi;
+ if (yi != 0) {
+ // re-use the same buffer throughout
+ zi.set_len(0);
+ FASTFLOAT_TRY(zi.try_extend(zs));
+ FASTFLOAT_TRY(small_mul(zi, yi));
+ limb_span zis = limb_span(zi.data, zi.len());
+ FASTFLOAT_TRY(large_add_from(x, zis, index));
+ }
+ }
+ }
+
+ x.normalize();
+ return true;
+}
+
+// grade-school multiplication algorithm
+template <uint16_t size>
+FASTFLOAT_CONSTEXPR20 bool large_mul(stackvec<size> &x, limb_span y) noexcept {
+ if (y.len() == 1) {
+ FASTFLOAT_TRY(small_mul(x, y[0]));
+ } else {
+ FASTFLOAT_TRY(long_mul(x, y));
+ }
+ return true;
+}
+
+template <typename = void> struct pow5_tables {
+ static constexpr uint32_t large_step = 135;
+ static constexpr uint64_t small_power_of_5[] = {
+ 1UL,
+ 5UL,
+ 25UL,
+ 125UL,
+ 625UL,
+ 3125UL,
+ 15625UL,
+ 78125UL,
+ 390625UL,
+ 1953125UL,
+ 9765625UL,
+ 48828125UL,
+ 244140625UL,
+ 1220703125UL,
+ 6103515625UL,
+ 30517578125UL,
+ 152587890625UL,
+ 762939453125UL,
+ 3814697265625UL,
+ 19073486328125UL,
+ 95367431640625UL,
+ 476837158203125UL,
+ 2384185791015625UL,
+ 11920928955078125UL,
+ 59604644775390625UL,
+ 298023223876953125UL,
+ 1490116119384765625UL,
+ 7450580596923828125UL,
+ };
+#ifdef FASTFLOAT_64BIT_LIMB
+ constexpr static limb large_power_of_5[] = {
+ 1414648277510068013UL, 9180637584431281687UL, 4539964771860779200UL,
+ 10482974169319127550UL, 198276706040285095UL};
+#else
+ constexpr static limb large_power_of_5[] = {
+ 4279965485U, 329373468U, 4020270615U, 2137533757U, 4287402176U,
+ 1057042919U, 1071430142U, 2440757623U, 381945767U, 46164893U};
+#endif
+};
+
+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE
+
+template <typename T> constexpr uint32_t pow5_tables<T>::large_step;
+
+template <typename T> constexpr uint64_t pow5_tables<T>::small_power_of_5[];
+
+template <typename T> constexpr limb pow5_tables<T>::large_power_of_5[];
+
+#endif
+
+// big integer type. implements a small subset of big integer
+// arithmetic, using simple algorithms since asymptotically
+// faster algorithms are slower for a small number of limbs.
+// all operations assume the big-integer is normalized.
+struct bigint : pow5_tables<> {
+ // storage of the limbs, in little-endian order.
+ stackvec<bigint_limbs> vec;
+
+ FASTFLOAT_CONSTEXPR20 bigint() : vec() {}
+ bigint(const bigint &) = delete;
+ bigint &operator=(const bigint &) = delete;
+ bigint(bigint &&) = delete;
+ bigint &operator=(bigint &&other) = delete;
+
+ FASTFLOAT_CONSTEXPR20 bigint(uint64_t value) : vec() {
+#ifdef FASTFLOAT_64BIT_LIMB
+ vec.push_unchecked(value);
+#else
+ vec.push_unchecked(uint32_t(value));
+ vec.push_unchecked(uint32_t(value >> 32));
+#endif
+ vec.normalize();
+ }
+
+ // get the high 64 bits from the vector, and if bits were truncated.
+ // this is to get the significant digits for the float.
+ FASTFLOAT_CONSTEXPR20 uint64_t hi64(bool &truncated) const noexcept {
+#ifdef FASTFLOAT_64BIT_LIMB
+ if (vec.len() == 0) {
+ return empty_hi64(truncated);
+ } else if (vec.len() == 1) {
+ return uint64_hi64(vec.rindex(0), truncated);
+ } else {
+ uint64_t result = uint64_hi64(vec.rindex(0), vec.rindex(1), truncated);
+ truncated |= vec.nonzero(2);
+ return result;
+ }
+#else
+ if (vec.len() == 0) {
+ return empty_hi64(truncated);
+ } else if (vec.len() == 1) {
+ return uint32_hi64(vec.rindex(0), truncated);
+ } else if (vec.len() == 2) {
+ return uint32_hi64(vec.rindex(0), vec.rindex(1), truncated);
+ } else {
+ uint64_t result =
+ uint32_hi64(vec.rindex(0), vec.rindex(1), vec.rindex(2), truncated);
+ truncated |= vec.nonzero(3);
+ return result;
+ }
+#endif
+ }
+
+ // compare two big integers, returning the large value.
+ // assumes both are normalized. if the return value is
+ // negative, other is larger, if the return value is
+ // positive, this is larger, otherwise they are equal.
+ // the limbs are stored in little-endian order, so we
+ // must compare the limbs in ever order.
+ FASTFLOAT_CONSTEXPR20 int compare(const bigint &other) const noexcept {
+ if (vec.len() > other.vec.len()) {
+ return 1;
+ } else if (vec.len() < other.vec.len()) {
+ return -1;
+ } else {
+ for (size_t index = vec.len(); index > 0; index--) {
+ limb xi = vec[index - 1];
+ limb yi = other.vec[index - 1];
+ if (xi > yi) {
+ return 1;
+ } else if (xi < yi) {
+ return -1;
+ }
+ }
+ return 0;
+ }
+ }
+
+ // shift left each limb n bits, carrying over to the new limb
+ // returns true if we were able to shift all the digits.
+ FASTFLOAT_CONSTEXPR20 bool shl_bits(size_t n) noexcept {
+ // Internally, for each item, we shift left by n, and add the previous
+ // right shifted limb-bits.
+ // For example, we transform (for u8) shifted left 2, to:
+ // b10100100 b01000010
+ // b10 b10010001 b00001000
+ FASTFLOAT_DEBUG_ASSERT(n != 0);
+ FASTFLOAT_DEBUG_ASSERT(n < sizeof(limb) * 8);
+
+ size_t shl = n;
+ size_t shr = limb_bits - shl;
+ limb prev = 0;
+ for (size_t index = 0; index < vec.len(); index++) {
+ limb xi = vec[index];
+ vec[index] = (xi << shl) | (prev >> shr);
+ prev = xi;
+ }
+
+ limb carry = prev >> shr;
+ if (carry != 0) {
+ return vec.try_push(carry);
+ }
+ return true;
+ }
+
+ // move the limbs left by `n` limbs.
+ FASTFLOAT_CONSTEXPR20 bool shl_limbs(size_t n) noexcept {
+ FASTFLOAT_DEBUG_ASSERT(n != 0);
+ if (n + vec.len() > vec.capacity()) {
+ return false;
+ } else if (!vec.is_empty()) {
+ // move limbs
+ limb *dst = vec.data + n;
+ const limb *src = vec.data;
+ std::copy_backward(src, src + vec.len(), dst + vec.len());
+ // fill in empty limbs
+ limb *first = vec.data;
+ limb *last = first + n;
+ ::std::fill(first, last, 0);
+ vec.set_len(n + vec.len());
+ return true;
+ } else {
+ return true;
+ }
+ }
+
+ // move the limbs left by `n` bits.
+ FASTFLOAT_CONSTEXPR20 bool shl(size_t n) noexcept {
+ size_t rem = n % limb_bits;
+ size_t div = n / limb_bits;
+ if (rem != 0) {
+ FASTFLOAT_TRY(shl_bits(rem));
+ }
+ if (div != 0) {
+ FASTFLOAT_TRY(shl_limbs(div));
+ }
+ return true;
+ }
+
+ // get the number of leading zeros in the bigint.
+ FASTFLOAT_CONSTEXPR20 int ctlz() const noexcept {
+ if (vec.is_empty()) {
+ return 0;
+ } else {
+#ifdef FASTFLOAT_64BIT_LIMB
+ return leading_zeroes(vec.rindex(0));
+#else
+ // no use defining a specialized leading_zeroes for a 32-bit type.
+ uint64_t r0 = vec.rindex(0);
+ return leading_zeroes(r0 << 32);
+#endif
+ }
+ }
+
+ // get the number of bits in the bigint.
+ FASTFLOAT_CONSTEXPR20 int bit_length() const noexcept {
+ int lz = ctlz();
+ return int(limb_bits * vec.len()) - lz;
+ }
+
+ FASTFLOAT_CONSTEXPR20 bool mul(limb y) noexcept { return small_mul(vec, y); }
+
+ FASTFLOAT_CONSTEXPR20 bool add(limb y) noexcept { return small_add(vec, y); }
+
+ // multiply as if by 2 raised to a power.
+ FASTFLOAT_CONSTEXPR20 bool pow2(uint32_t exp) noexcept { return shl(exp); }
+
+ // multiply as if by 5 raised to a power.
+ FASTFLOAT_CONSTEXPR20 bool pow5(uint32_t exp) noexcept {
+ // multiply by a power of 5
+ size_t large_length = sizeof(large_power_of_5) / sizeof(limb);
+ limb_span large = limb_span(large_power_of_5, large_length);
+ while (exp >= large_step) {
+ FASTFLOAT_TRY(large_mul(vec, large));
+ exp -= large_step;
+ }
+#ifdef FASTFLOAT_64BIT_LIMB
+ uint32_t small_step = 27;
+ limb max_native = 7450580596923828125UL;
+#else
+ uint32_t small_step = 13;
+ limb max_native = 1220703125U;
+#endif
+ while (exp >= small_step) {
+ FASTFLOAT_TRY(small_mul(vec, max_native));
+ exp -= small_step;
+ }
+ if (exp != 0) {
+ // Work around clang bug https://godbolt.org/z/zedh7rrhc
+ // This is similar to https://github.com/llvm/llvm-project/issues/47746,
+ // except the workaround described there don't work here
+ FASTFLOAT_TRY(small_mul(
+ vec, limb(((void)small_power_of_5[0], small_power_of_5[exp]))));
+ }
+
+ return true;
+ }
+
+ // multiply as if by 10 raised to a power.
+ FASTFLOAT_CONSTEXPR20 bool pow10(uint32_t exp) noexcept {
+ FASTFLOAT_TRY(pow5(exp));
+ return pow2(exp);
+ }
+};
+
+} // namespace fast_float
+
+#endif
+
+#ifndef FASTFLOAT_DIGIT_COMPARISON_H
+#define FASTFLOAT_DIGIT_COMPARISON_H
+
+#include <algorithm>
+#include <cstdint>
+#include <cstring>
+#include <iterator>
+
+
+namespace fast_float {
+
+// 1e0 to 1e19
+constexpr static uint64_t powers_of_ten_uint64[] = {1UL,
+ 10UL,
+ 100UL,
+ 1000UL,
+ 10000UL,
+ 100000UL,
+ 1000000UL,
+ 10000000UL,
+ 100000000UL,
+ 1000000000UL,
+ 10000000000UL,
+ 100000000000UL,
+ 1000000000000UL,
+ 10000000000000UL,
+ 100000000000000UL,
+ 1000000000000000UL,
+ 10000000000000000UL,
+ 100000000000000000UL,
+ 1000000000000000000UL,
+ 10000000000000000000UL};
+
+// calculate the exponent, in scientific notation, of the number.
+// this algorithm is not even close to optimized, but it has no practical
+// effect on performance: in order to have a faster algorithm, we'd need
+// to slow down performance for faster algorithms, and this is still fast.
+template <typename UC>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 int32_t
+scientific_exponent(parsed_number_string_t<UC> &num) noexcept {
+ uint64_t mantissa = num.mantissa;
+ int32_t exponent = int32_t(num.exponent);
+ while (mantissa >= 10000) {
+ mantissa /= 10000;
+ exponent += 4;
+ }
+ while (mantissa >= 100) {
+ mantissa /= 100;
+ exponent += 2;
+ }
+ while (mantissa >= 10) {
+ mantissa /= 10;
+ exponent += 1;
+ }
+ return exponent;
+}
+
+// this converts a native floating-point number to an extended-precision float.
+template <typename T>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
+to_extended(T value) noexcept {
+ using equiv_uint = typename binary_format<T>::equiv_uint;
+ constexpr equiv_uint exponent_mask = binary_format<T>::exponent_mask();
+ constexpr equiv_uint mantissa_mask = binary_format<T>::mantissa_mask();
+ constexpr equiv_uint hidden_bit_mask = binary_format<T>::hidden_bit_mask();
+
+ adjusted_mantissa am;
+ int32_t bias = binary_format<T>::mantissa_explicit_bits() -
+ binary_format<T>::minimum_exponent();
+ equiv_uint bits;
+#if FASTFLOAT_HAS_BIT_CAST
+ bits = std::bit_cast<equiv_uint>(value);
+#else
+ ::memcpy(&bits, &value, sizeof(T));
+#endif
+ if ((bits & exponent_mask) == 0) {
+ // denormal
+ am.power2 = 1 - bias;
+ am.mantissa = bits & mantissa_mask;
+ } else {
+ // normal
+ am.power2 = int32_t((bits & exponent_mask) >>
+ binary_format<T>::mantissa_explicit_bits());
+ am.power2 -= bias;
+ am.mantissa = (bits & mantissa_mask) | hidden_bit_mask;
+ }
+
+ return am;
+}
+
+// get the extended precision value of the halfway point between b and b+u.
+// we are given a native float that represents b, so we need to adjust it
+// halfway between b and b+u.
+template <typename T>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
+to_extended_halfway(T value) noexcept {
+ adjusted_mantissa am = to_extended(value);
+ am.mantissa <<= 1;
+ am.mantissa += 1;
+ am.power2 -= 1;
+ return am;
+}
+
+// round an extended-precision float to the nearest machine float.
+template <typename T, typename callback>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void round(adjusted_mantissa &am,
+ callback cb) noexcept {
+ int32_t mantissa_shift = 64 - binary_format<T>::mantissa_explicit_bits() - 1;
+ if (-am.power2 >= mantissa_shift) {
+ // have a denormal float
+ int32_t shift = -am.power2 + 1;
+ cb(am, std::min<int32_t>(shift, 64));
+ // check for round-up: if rounding-nearest carried us to the hidden bit.
+ am.power2 = (am.mantissa <
+ (uint64_t(1) << binary_format<T>::mantissa_explicit_bits()))
+ ? 0
+ : 1;
+ return;
+ }
+
+ // have a normal float, use the default shift.
+ cb(am, mantissa_shift);
+
+ // check for carry
+ if (am.mantissa >=
+ (uint64_t(2) << binary_format<T>::mantissa_explicit_bits())) {
+ am.mantissa = (uint64_t(1) << binary_format<T>::mantissa_explicit_bits());
+ am.power2++;
+ }
+
+ // check for infinite: we could have carried to an infinite power
+ am.mantissa &= ~(uint64_t(1) << binary_format<T>::mantissa_explicit_bits());
+ if (am.power2 >= binary_format<T>::infinite_power()) {
+ am.power2 = binary_format<T>::infinite_power();
+ am.mantissa = 0;
+ }
+}
+
+template <typename callback>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void
+round_nearest_tie_even(adjusted_mantissa &am, int32_t shift,
+ callback cb) noexcept {
+ const uint64_t mask = (shift == 64) ? UINT64_MAX : (uint64_t(1) << shift) - 1;
+ const uint64_t halfway = (shift == 0) ? 0 : uint64_t(1) << (shift - 1);
+ uint64_t truncated_bits = am.mantissa & mask;
+ bool is_above = truncated_bits > halfway;
+ bool is_halfway = truncated_bits == halfway;
+
+ // shift digits into position
+ if (shift == 64) {
+ am.mantissa = 0;
+ } else {
+ am.mantissa >>= shift;
+ }
+ am.power2 += shift;
+
+ bool is_odd = (am.mantissa & 1) == 1;
+ am.mantissa += uint64_t(cb(is_odd, is_halfway, is_above));
+}
+
+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void
+round_down(adjusted_mantissa &am, int32_t shift) noexcept {
+ if (shift == 64) {
+ am.mantissa = 0;
+ } else {
+ am.mantissa >>= shift;
+ }
+ am.power2 += shift;
+}
+template <typename UC>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
+skip_zeros(UC const *&first, UC const *last) noexcept {
+ uint64_t val;
+ while (!cpp20_and_in_constexpr() &&
+ std::distance(first, last) >= int_cmp_len<UC>()) {
+ ::memcpy(&val, first, sizeof(uint64_t));
+ if (val != int_cmp_zeros<UC>()) {
+ break;
+ }
+ first += int_cmp_len<UC>();
+ }
+ while (first != last) {
+ if (*first != UC('0')) {
+ break;
+ }
+ first++;
+ }
+}
+
+// determine if any non-zero digits were truncated.
+// all characters must be valid digits.
+template <typename UC>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
+is_truncated(UC const *first, UC const *last) noexcept {
+ // do 8-bit optimizations, can just compare to 8 literal 0s.
+ uint64_t val;
+ while (!cpp20_and_in_constexpr() &&
+ std::distance(first, last) >= int_cmp_len<UC>()) {
+ ::memcpy(&val, first, sizeof(uint64_t));
+ if (val != int_cmp_zeros<UC>()) {
+ return true;
+ }
+ first += int_cmp_len<UC>();
+ }
+ while (first != last) {
+ if (*first != UC('0')) {
+ return true;
+ }
+ ++first;
+ }
+ return false;
+}
+template <typename UC>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
+is_truncated(span<const UC> s) noexcept {
+ return is_truncated(s.ptr, s.ptr + s.len());
+}
+
+template <typename UC>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
+parse_eight_digits(const UC *&p, limb &value, size_t &counter,
+ size_t &count) noexcept {
+ value = value * 100000000 + parse_eight_digits_unrolled(p);
+ p += 8;
+ counter += 8;
+ count += 8;
+}
+
+template <typename UC>
+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void
+parse_one_digit(UC const *&p, limb &value, size_t &counter,
+ size_t &count) noexcept {
+ value = value * 10 + limb(*p - UC('0'));
+ p++;
+ counter++;
+ count++;
+}
+
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
+add_native(bigint &big, limb power, limb value) noexcept {
+ big.mul(power);
+ big.add(value);
+}
+
+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
+round_up_bigint(bigint &big, size_t &count) noexcept {
+ // need to round-up the digits, but need to avoid rounding
+ // ....9999 to ...10000, which could cause a false halfway point.
+ add_native(big, 10, 1);
+ count++;
+}
+
+// parse the significant digits into a big integer
+template <typename UC>
+inline FASTFLOAT_CONSTEXPR20 void
+parse_mantissa(bigint &result, parsed_number_string_t<UC> &num,
+ size_t max_digits, size_t &digits) noexcept {
+ // try to minimize the number of big integer and scalar multiplication.
+ // therefore, try to parse 8 digits at a time, and multiply by the largest
+ // scalar value (9 or 19 digits) for each step.
+ size_t counter = 0;
+ digits = 0;
+ limb value = 0;
+#ifdef FASTFLOAT_64BIT_LIMB
+ size_t step = 19;
+#else
+ size_t step = 9;
+#endif
+
+ // process all integer digits.
+ UC const *p = num.integer.ptr;
+ UC const *pend = p + num.integer.len();
+ skip_zeros(p, pend);
+ // process all digits, in increments of step per loop
+ while (p != pend) {
+ while ((std::distance(p, pend) >= 8) && (step - counter >= 8) &&
+ (max_digits - digits >= 8)) {
+ parse_eight_digits(p, value, counter, digits);
+ }
+ while (counter < step && p != pend && digits < max_digits) {
+ parse_one_digit(p, value, counter, digits);
+ }
+ if (digits == max_digits) {
+ // add the temporary value, then check if we've truncated any digits
+ add_native(result, limb(powers_of_ten_uint64[counter]), value);
+ bool truncated = is_truncated(p, pend);
+ if (num.fraction.ptr != nullptr) {
+ truncated |= is_truncated(num.fraction);
+ }
+ if (truncated) {
+ round_up_bigint(result, digits);
+ }
+ return;
+ } else {
+ add_native(result, limb(powers_of_ten_uint64[counter]), value);
+ counter = 0;
+ value = 0;
+ }
+ }
+
+ // add our fraction digits, if they're available.
+ if (num.fraction.ptr != nullptr) {
+ p = num.fraction.ptr;
+ pend = p + num.fraction.len();
+ if (digits == 0) {
+ skip_zeros(p, pend);
+ }
+ // process all digits, in increments of step per loop
+ while (p != pend) {
+ while ((std::distance(p, pend) >= 8) && (step - counter >= 8) &&
+ (max_digits - digits >= 8)) {
+ parse_eight_digits(p, value, counter, digits);
+ }
+ while (counter < step && p != pend && digits < max_digits) {
+ parse_one_digit(p, value, counter, digits);
+ }
+ if (digits == max_digits) {
+ // add the temporary value, then check if we've truncated any digits
+ add_native(result, limb(powers_of_ten_uint64[counter]), value);
+ bool truncated = is_truncated(p, pend);
+ if (truncated) {
+ round_up_bigint(result, digits);
+ }
+ return;
+ } else {
+ add_native(result, limb(powers_of_ten_uint64[counter]), value);
+ counter = 0;
+ value = 0;
+ }
+ }
+ }
+
+ if (counter != 0) {
+ add_native(result, limb(powers_of_ten_uint64[counter]), value);
+ }
+}
+
+template <typename T>
+inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
+positive_digit_comp(bigint &bigmant, int32_t exponent) noexcept {
+ FASTFLOAT_ASSERT(bigmant.pow10(uint32_t(exponent)));
+ adjusted_mantissa answer;
+ bool truncated;
+ answer.mantissa = bigmant.hi64(truncated);
+ int bias = binary_format<T>::mantissa_explicit_bits() -
+ binary_format<T>::minimum_exponent();
+ answer.power2 = bigmant.bit_length() - 64 + bias;
+
+ round<T>(answer, [truncated](adjusted_mantissa &a, int32_t shift) {
+ round_nearest_tie_even(
+ a, shift,
+ [truncated](bool is_odd, bool is_halfway, bool is_above) -> bool {
+ return is_above || (is_halfway && truncated) ||
+ (is_odd && is_halfway);
+ });
+ });
+
+ return answer;
+}
+
+// the scaling here is quite simple: we have, for the real digits `m * 10^e`,
+// and for the theoretical digits `n * 2^f`. Since `e` is always negative,
+// to scale them identically, we do `n * 2^f * 5^-f`, so we now have `m * 2^e`.
+// we then need to scale by `2^(f- e)`, and then the two significant digits
+// are of the same magnitude.
+template <typename T>
+inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa negative_digit_comp(
+ bigint &bigmant, adjusted_mantissa am, int32_t exponent) noexcept {
+ bigint &real_digits = bigmant;
+ int32_t real_exp = exponent;
+
+ // get the value of `b`, rounded down, and get a bigint representation of b+h
+ adjusted_mantissa am_b = am;
+ // gcc7 buf: use a lambda to remove the noexcept qualifier bug with
+ // -Wnoexcept-type.
+ round<T>(am_b,
+ [](adjusted_mantissa &a, int32_t shift) { round_down(a, shift); });
+ T b;
+ to_float(false, am_b, b);
+ adjusted_mantissa theor = to_extended_halfway(b);
+ bigint theor_digits(theor.mantissa);
+ int32_t theor_exp = theor.power2;
+
+ // scale real digits and theor digits to be same power.
+ int32_t pow2_exp = theor_exp - real_exp;
+ uint32_t pow5_exp = uint32_t(-real_exp);
+ if (pow5_exp != 0) {
+ FASTFLOAT_ASSERT(theor_digits.pow5(pow5_exp));
+ }
+ if (pow2_exp > 0) {
+ FASTFLOAT_ASSERT(theor_digits.pow2(uint32_t(pow2_exp)));
+ } else if (pow2_exp < 0) {
+ FASTFLOAT_ASSERT(real_digits.pow2(uint32_t(-pow2_exp)));
+ }
+
+ // compare digits, and use it to director rounding
+ int ord = real_digits.compare(theor_digits);
+ adjusted_mantissa answer = am;
+ round<T>(answer, [ord](adjusted_mantissa &a, int32_t shift) {
+ round_nearest_tie_even(
+ a, shift, [ord](bool is_odd, bool _, bool __) -> bool {
+ (void)_; // not needed, since we've done our comparison
+ (void)__; // not needed, since we've done our comparison
+ if (ord > 0) {
+ return true;
+ } else if (ord < 0) {
+ return false;
+ } else {
+ return is_odd;
+ }
+ });
+ });
+
+ return answer;
+}
+
+// parse the significant digits as a big integer to unambiguously round the
+// the significant digits. here, we are trying to determine how to round
+// an extended float representation close to `b+h`, halfway between `b`
+// (the float rounded-down) and `b+u`, the next positive float. this
+// algorithm is always correct, and uses one of two approaches. when
+// the exponent is positive relative to the significant digits (such as
+// 1234), we create a big-integer representation, get the high 64-bits,
+// determine if any lower bits are truncated, and use that to direct
+// rounding. in case of a negative exponent relative to the significant
+// digits (such as 1.2345), we create a theoretical representation of
+// `b` as a big-integer type, scaled to the same binary exponent as
+// the actual digits. we then compare the big integer representations
+// of both, and use that to direct rounding.
+template <typename T, typename UC>
+inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
+digit_comp(parsed_number_string_t<UC> &num, adjusted_mantissa am) noexcept {
+ // remove the invalid exponent bias
+ am.power2 -= invalid_am_bias;
+
+ int32_t sci_exp = scientific_exponent(num);
+ size_t max_digits = binary_format<T>::max_digits();
+ size_t digits = 0;
+ bigint bigmant;
+ parse_mantissa(bigmant, num, max_digits, digits);
+ // can't underflow, since digits is at most max_digits.
+ int32_t exponent = sci_exp + 1 - int32_t(digits);
+ if (exponent >= 0) {
+ return positive_digit_comp<T>(bigmant, exponent);
+ } else {
+ return negative_digit_comp<T>(bigmant, am, exponent);
+ }
+}
+
+} // namespace fast_float
+
+#endif
+
+#ifndef FASTFLOAT_PARSE_NUMBER_H
+#define FASTFLOAT_PARSE_NUMBER_H
+
+
+#include <cmath>
+#include <cstring>
+#include <limits>
+#include <system_error>
+namespace fast_float {
+
+namespace detail {
+/**
+ * Special case +inf, -inf, nan, infinity, -infinity.
+ * The case comparisons could be made much faster given that we know that the
+ * strings a null-free and fixed.
+ **/
+template <typename T, typename UC>
+from_chars_result_t<UC> FASTFLOAT_CONSTEXPR14 parse_infnan(UC const *first,
+ UC const *last,
+ T &value) noexcept {
+ from_chars_result_t<UC> answer{};
+ answer.ptr = first;
+ answer.ec = std::errc(); // be optimistic
+ bool minusSign = false;
+ if (*first ==
+ UC('-')) { // assume first < last, so dereference without checks;
+ // C++17 20.19.3.(7.1) explicitly forbids '+' here
+ minusSign = true;
+ ++first;
+ }
+#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default
+ if (*first == UC('+')) {
+ ++first;
+ }
+#endif
+ if (last - first >= 3) {
+ if (fastfloat_strncasecmp(first, str_const_nan<UC>(), 3)) {
+ answer.ptr = (first += 3);
+ value = minusSign ? -std::numeric_limits<T>::quiet_NaN()
+ : std::numeric_limits<T>::quiet_NaN();
+ // Check for possible nan(n-char-seq-opt), C++17 20.19.3.7,
+ // C11 7.20.1.3.3. At least MSVC produces nan(ind) and nan(snan).
+ if (first != last && *first == UC('(')) {
+ for (UC const *ptr = first + 1; ptr != last; ++ptr) {
+ if (*ptr == UC(')')) {
+ answer.ptr = ptr + 1; // valid nan(n-char-seq-opt)
+ break;
+ } else if (!((UC('a') <= *ptr && *ptr <= UC('z')) ||
+ (UC('A') <= *ptr && *ptr <= UC('Z')) ||
+ (UC('0') <= *ptr && *ptr <= UC('9')) || *ptr == UC('_')))
+ break; // forbidden char, not nan(n-char-seq-opt)
+ }
+ }
+ return answer;
+ }
+ if (fastfloat_strncasecmp(first, str_const_inf<UC>(), 3)) {
+ if ((last - first >= 8) &&
+ fastfloat_strncasecmp(first + 3, str_const_inf<UC>() + 3, 5)) {
+ answer.ptr = first + 8;
+ } else {
+ answer.ptr = first + 3;
+ }
+ value = minusSign ? -std::numeric_limits<T>::infinity()
+ : std::numeric_limits<T>::infinity();
+ return answer;
+ }
+ }
+ answer.ec = std::errc::invalid_argument;
+ return answer;
+}
+
+/**
+ * Returns true if the floating-pointing rounding mode is to 'nearest'.
+ * It is the default on most system. This function is meant to be inexpensive.
+ * Credit : @mwalcott3
+ */
+fastfloat_really_inline bool rounds_to_nearest() noexcept {
+ // https://lemire.me/blog/2020/06/26/gcc-not-nearest/
+#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
+ return false;
+#endif
+ // See
+ // A fast function to check your floating-point rounding mode
+ // https://lemire.me/blog/2022/11/16/a-fast-function-to-check-your-floating-point-rounding-mode/
+ //
+ // This function is meant to be equivalent to :
+ // prior: #include <cfenv>
+ // return fegetround() == FE_TONEAREST;
+ // However, it is expected to be much faster than the fegetround()
+ // function call.
+ //
+ // The volatile keywoard prevents the compiler from computing the function
+ // at compile-time.
+ // There might be other ways to prevent compile-time optimizations (e.g.,
+ // asm). The value does not need to be std::numeric_limits<float>::min(), any
+ // small value so that 1 + x should round to 1 would do (after accounting for
+ // excess precision, as in 387 instructions).
+ static volatile float fmin = std::numeric_limits<float>::min();
+ float fmini = fmin; // we copy it so that it gets loaded at most once.
+//
+// Explanation:
+// Only when fegetround() == FE_TONEAREST do we have that
+// fmin + 1.0f == 1.0f - fmin.
+//
+// FE_UPWARD:
+// fmin + 1.0f > 1
+// 1.0f - fmin == 1
+//
+// FE_DOWNWARD or FE_TOWARDZERO:
+// fmin + 1.0f == 1
+// 1.0f - fmin < 1
+//
+// Note: This may fail to be accurate if fast-math has been
+// enabled, as rounding conventions may not apply.
+#ifdef FASTFLOAT_VISUAL_STUDIO
+#pragma warning(push)
+// todo: is there a VS warning?
+// see
+// https://stackoverflow.com/questions/46079446/is-there-a-warning-for-floating-point-equality-checking-in-visual-studio-2013
+#elif defined(__clang__)
+#pragma clang diagnostic push
+#pragma clang diagnostic ignored "-Wfloat-equal"
+#elif defined(__GNUC__)
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wfloat-equal"
+#endif
+ return (fmini + 1.0f == 1.0f - fmini);
+#ifdef FASTFLOAT_VISUAL_STUDIO
+#pragma warning(pop)
+#elif defined(__clang__)
+#pragma clang diagnostic pop
+#elif defined(__GNUC__)
+#pragma GCC diagnostic pop
+#endif
+}
+
+} // namespace detail
+
+template <typename T> struct from_chars_caller {
+ template <typename UC>
+ FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC>
+ call(UC const *first, UC const *last, T &value,
+ parse_options_t<UC> options) noexcept {
+ return from_chars_advanced(first, last, value, options);
+ }
+};
+
+#if __STDCPP_FLOAT32_T__ == 1
+template <> struct from_chars_caller<std::float32_t> {
+ template <typename UC>
+ FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC>
+ call(UC const *first, UC const *last, std::float32_t &value,
+ parse_options_t<UC> options) noexcept {
+ // if std::float32_t is defined, and we are in C++23 mode; macro set for
+ // float32; set value to float due to equivalence between float and
+ // float32_t
+ float val;
+ auto ret = from_chars_advanced(first, last, val, options);
+ value = val;
+ return ret;
+ }
+};
+#endif
+
+#if __STDCPP_FLOAT64_T__ == 1
+template <> struct from_chars_caller<std::float64_t> {
+ template <typename UC>
+ FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC>
+ call(UC const *first, UC const *last, std::float64_t &value,
+ parse_options_t<UC> options) noexcept {
+ // if std::float64_t is defined, and we are in C++23 mode; macro set for
+ // float64; set value as double due to equivalence between double and
+ // float64_t
+ double val;
+ auto ret = from_chars_advanced(first, last, val, options);
+ value = val;
+ return ret;
+ }
+};
+#endif
+
+template <typename T, typename UC, typename>
+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
+from_chars(UC const *first, UC const *last, T &value,
+ chars_format fmt /*= chars_format::general*/) noexcept {
+ return from_chars_caller<T>::call(first, last, value,
+ parse_options_t<UC>(fmt));
+}
+
+/**
+ * This function overload takes parsed_number_string_t structure that is created
+ * and populated either by from_chars_advanced function taking chars range and
+ * parsing options or other parsing custom function implemented by user.
+ */
+template <typename T, typename UC>
+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
+from_chars_advanced(parsed_number_string_t<UC> &pns, T &value) noexcept {
+
+ static_assert(is_supported_float_type<T>(),
+ "only some floating-point types are supported");
+ static_assert(is_supported_char_type<UC>(),
+ "only char, wchar_t, char16_t and char32_t are supported");
+
+ from_chars_result_t<UC> answer;
+
+ answer.ec = std::errc(); // be optimistic
+ answer.ptr = pns.lastmatch;
+ // The implementation of the Clinger's fast path is convoluted because
+ // we want round-to-nearest in all cases, irrespective of the rounding mode
+ // selected on the thread.
+ // We proceed optimistically, assuming that detail::rounds_to_nearest()
+ // returns true.
+ if (binary_format<T>::min_exponent_fast_path() <= pns.exponent &&
+ pns.exponent <= binary_format<T>::max_exponent_fast_path() &&
+ !pns.too_many_digits) {
+ // Unfortunately, the conventional Clinger's fast path is only possible
+ // when the system rounds to the nearest float.
+ //
+ // We expect the next branch to almost always be selected.
+ // We could check it first (before the previous branch), but
+ // there might be performance advantages at having the check
+ // be last.
+ if (!cpp20_and_in_constexpr() && detail::rounds_to_nearest()) {
+ // We have that fegetround() == FE_TONEAREST.
+ // Next is Clinger's fast path.
+ if (pns.mantissa <= binary_format<T>::max_mantissa_fast_path()) {
+ value = T(pns.mantissa);
+ if (pns.exponent < 0) {
+ value = value / binary_format<T>::exact_power_of_ten(-pns.exponent);
+ } else {
+ value = value * binary_format<T>::exact_power_of_ten(pns.exponent);
+ }
+ if (pns.negative) {
+ value = -value;
+ }
+ return answer;
+ }
+ } else {
+ // We do not have that fegetround() == FE_TONEAREST.
+ // Next is a modified Clinger's fast path, inspired by Jakub Jelínek's
+ // proposal
+ if (pns.exponent >= 0 &&
+ pns.mantissa <=
+ binary_format<T>::max_mantissa_fast_path(pns.exponent)) {
+#if defined(__clang__) || defined(FASTFLOAT_32BIT)
+ // Clang may map 0 to -0.0 when fegetround() == FE_DOWNWARD
+ if (pns.mantissa == 0) {
+ value = pns.negative ? T(-0.) : T(0.);
+ return answer;
+ }
+#endif
+ value = T(pns.mantissa) *
+ binary_format<T>::exact_power_of_ten(pns.exponent);
+ if (pns.negative) {
+ value = -value;
+ }
+ return answer;
+ }
+ }
+ }
+ adjusted_mantissa am =
+ compute_float<binary_format<T>>(pns.exponent, pns.mantissa);
+ if (pns.too_many_digits && am.power2 >= 0) {
+ if (am != compute_float<binary_format<T>>(pns.exponent, pns.mantissa + 1)) {
+ am = compute_error<binary_format<T>>(pns.exponent, pns.mantissa);
+ }
+ }
+ // If we called compute_float<binary_format<T>>(pns.exponent, pns.mantissa)
+ // and we have an invalid power (am.power2 < 0), then we need to go the long
+ // way around again. This is very uncommon.
+ if (am.power2 < 0) {
+ am = digit_comp<T>(pns, am);
+ }
+ to_float(pns.negative, am, value);
+ // Test for over/underflow.
+ if ((pns.mantissa != 0 && am.mantissa == 0 && am.power2 == 0) ||
+ am.power2 == binary_format<T>::infinite_power()) {
+ answer.ec = std::errc::result_out_of_range;
+ }
+ return answer;
+}
+
+template <typename T, typename UC>
+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
+from_chars_advanced(UC const *first, UC const *last, T &value,
+ parse_options_t<UC> options) noexcept {
+
+ static_assert(is_supported_float_type<T>(),
+ "only some floating-point types are supported");
+ static_assert(is_supported_char_type<UC>(),
+ "only char, wchar_t, char16_t and char32_t are supported");
+
+ from_chars_result_t<UC> answer;
+#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default
+ while ((first != last) && fast_float::is_space(uint8_t(*first))) {
+ first++;
+ }
+#endif
+ if (first == last) {
+ answer.ec = std::errc::invalid_argument;
+ answer.ptr = first;
+ return answer;
+ }
+ parsed_number_string_t<UC> pns =
+ parse_number_string<UC>(first, last, options);
+ if (!pns.valid) {
+ if (options.format & chars_format::no_infnan) {
+ answer.ec = std::errc::invalid_argument;
+ answer.ptr = first;
+ return answer;
+ } else {
+ return detail::parse_infnan(first, last, value);
+ }
+ }
+
+ // call overload that takes parsed_number_string_t directly.
+ return from_chars_advanced(pns, value);
+}
+
+template <typename T, typename UC, typename>
+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
+from_chars(UC const *first, UC const *last, T &value, int base) noexcept {
+ static_assert(is_supported_char_type<UC>(),
+ "only char, wchar_t, char16_t and char32_t are supported");
+
+ from_chars_result_t<UC> answer;
+#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default
+ while ((first != last) && fast_float::is_space(uint8_t(*first))) {
+ first++;
+ }
+#endif
+ if (first == last || base < 2 || base > 36) {
+ answer.ec = std::errc::invalid_argument;
+ answer.ptr = first;
+ return answer;
+ }
+ return parse_int_string(first, last, value, base);
+}
+
+} // namespace fast_float
+
+#endif
+